Properties

Label 2-1445-1.1-c1-0-4
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·2-s − 1.54·3-s + 5.45·4-s − 5-s + 4.22·6-s + 1.26·7-s − 9.43·8-s − 0.607·9-s + 2.73·10-s − 0.417·11-s − 8.44·12-s − 5.66·13-s − 3.45·14-s + 1.54·15-s + 14.8·16-s + 1.65·18-s − 0.134·19-s − 5.45·20-s − 1.95·21-s + 1.14·22-s − 6.81·23-s + 14.5·24-s + 25-s + 15.4·26-s + 5.57·27-s + 6.89·28-s − 0.329·29-s + ⋯
L(s)  = 1  − 1.93·2-s − 0.893·3-s + 2.72·4-s − 0.447·5-s + 1.72·6-s + 0.477·7-s − 3.33·8-s − 0.202·9-s + 0.863·10-s − 0.126·11-s − 2.43·12-s − 1.57·13-s − 0.922·14-s + 0.399·15-s + 3.71·16-s + 0.390·18-s − 0.0307·19-s − 1.22·20-s − 0.426·21-s + 0.243·22-s − 1.42·23-s + 2.98·24-s + 0.200·25-s + 3.03·26-s + 1.07·27-s + 1.30·28-s − 0.0611·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2279648870\)
\(L(\frac12)\) \(\approx\) \(0.2279648870\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + 2.73T + 2T^{2} \)
3 \( 1 + 1.54T + 3T^{2} \)
7 \( 1 - 1.26T + 7T^{2} \)
11 \( 1 + 0.417T + 11T^{2} \)
13 \( 1 + 5.66T + 13T^{2} \)
19 \( 1 + 0.134T + 19T^{2} \)
23 \( 1 + 6.81T + 23T^{2} \)
29 \( 1 + 0.329T + 29T^{2} \)
31 \( 1 - 0.605T + 31T^{2} \)
37 \( 1 - 8.83T + 37T^{2} \)
41 \( 1 + 1.63T + 41T^{2} \)
43 \( 1 + 1.99T + 43T^{2} \)
47 \( 1 + 5.06T + 47T^{2} \)
53 \( 1 + 1.54T + 53T^{2} \)
59 \( 1 + 1.41T + 59T^{2} \)
61 \( 1 - 7.80T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 + 4.82T + 71T^{2} \)
73 \( 1 - 2.90T + 73T^{2} \)
79 \( 1 + 4.33T + 79T^{2} \)
83 \( 1 + 4.39T + 83T^{2} \)
89 \( 1 - 4.98T + 89T^{2} \)
97 \( 1 - 0.635T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.689194009864277115083844487441, −8.656710769967298387568444439144, −7.957674393740685354688954462776, −7.41713075274566093746199162975, −6.52114505761563497136681418279, −5.74377060518100903041760781725, −4.65253713733975887334258455308, −2.94178219057648883423891267341, −1.91103652810641360559638686839, −0.45429506631537195866721982828, 0.45429506631537195866721982828, 1.91103652810641360559638686839, 2.94178219057648883423891267341, 4.65253713733975887334258455308, 5.74377060518100903041760781725, 6.52114505761563497136681418279, 7.41713075274566093746199162975, 7.957674393740685354688954462776, 8.656710769967298387568444439144, 9.689194009864277115083844487441

Graph of the $Z$-function along the critical line