Properties

Label 2-1445-1.1-c1-0-41
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 5-s + 6-s + 5·7-s − 3·8-s − 2·9-s + 10-s − 2·11-s − 12-s + 2·13-s + 5·14-s + 15-s − 16-s − 2·18-s + 6·19-s − 20-s + 5·21-s − 2·22-s + 9·23-s − 3·24-s + 25-s + 2·26-s − 5·27-s − 5·28-s + 6·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.88·7-s − 1.06·8-s − 2/3·9-s + 0.316·10-s − 0.603·11-s − 0.288·12-s + 0.554·13-s + 1.33·14-s + 0.258·15-s − 1/4·16-s − 0.471·18-s + 1.37·19-s − 0.223·20-s + 1.09·21-s − 0.426·22-s + 1.87·23-s − 0.612·24-s + 1/5·25-s + 0.392·26-s − 0.962·27-s − 0.944·28-s + 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.109101574\)
\(L(\frac12)\) \(\approx\) \(3.109101574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \)
3 \( 1 - T + p T^{2} \)
7 \( 1 - 5 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 - 2 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.154525972743801691967542274304, −8.803193927712396030361859047273, −8.043406735512049472154150448400, −7.25873984797176349142798903416, −5.79378556184675887096953301669, −5.23359085981744042930249949446, −4.66946282677540953692984388245, −3.44255909433744638508835564382, −2.60832335815397996539008924955, −1.25401043269288922318258428917, 1.25401043269288922318258428917, 2.60832335815397996539008924955, 3.44255909433744638508835564382, 4.66946282677540953692984388245, 5.23359085981744042930249949446, 5.79378556184675887096953301669, 7.25873984797176349142798903416, 8.043406735512049472154150448400, 8.803193927712396030361859047273, 9.154525972743801691967542274304

Graph of the $Z$-function along the critical line