L(s) = 1 | + 0.747·2-s − 3.07·3-s − 1.44·4-s + 5-s − 2.29·6-s − 3.23·7-s − 2.57·8-s + 6.45·9-s + 0.747·10-s + 2.73·11-s + 4.42·12-s + 4.31·13-s − 2.41·14-s − 3.07·15-s + 0.956·16-s + 4.82·18-s + 1.26·19-s − 1.44·20-s + 9.94·21-s + 2.04·22-s + 0.492·23-s + 7.91·24-s + 25-s + 3.22·26-s − 10.6·27-s + 4.65·28-s − 0.444·29-s + ⋯ |
L(s) = 1 | + 0.528·2-s − 1.77·3-s − 0.720·4-s + 0.447·5-s − 0.938·6-s − 1.22·7-s − 0.909·8-s + 2.15·9-s + 0.236·10-s + 0.824·11-s + 1.27·12-s + 1.19·13-s − 0.646·14-s − 0.793·15-s + 0.239·16-s + 1.13·18-s + 0.291·19-s − 0.322·20-s + 2.16·21-s + 0.436·22-s + 0.102·23-s + 1.61·24-s + 0.200·25-s + 0.633·26-s − 2.04·27-s + 0.880·28-s − 0.0825·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 0.747T + 2T^{2} \) |
| 3 | \( 1 + 3.07T + 3T^{2} \) |
| 7 | \( 1 + 3.23T + 7T^{2} \) |
| 11 | \( 1 - 2.73T + 11T^{2} \) |
| 13 | \( 1 - 4.31T + 13T^{2} \) |
| 19 | \( 1 - 1.26T + 19T^{2} \) |
| 23 | \( 1 - 0.492T + 23T^{2} \) |
| 29 | \( 1 + 0.444T + 29T^{2} \) |
| 31 | \( 1 + 5.52T + 31T^{2} \) |
| 37 | \( 1 + 10.6T + 37T^{2} \) |
| 41 | \( 1 - 2.17T + 41T^{2} \) |
| 43 | \( 1 + 2.16T + 43T^{2} \) |
| 47 | \( 1 + 8.39T + 47T^{2} \) |
| 53 | \( 1 + 1.81T + 53T^{2} \) |
| 59 | \( 1 + 3.01T + 59T^{2} \) |
| 61 | \( 1 - 12.2T + 61T^{2} \) |
| 67 | \( 1 - 4.21T + 67T^{2} \) |
| 71 | \( 1 - 3.89T + 71T^{2} \) |
| 73 | \( 1 - 6.47T + 73T^{2} \) |
| 79 | \( 1 + 7.22T + 79T^{2} \) |
| 83 | \( 1 - 0.227T + 83T^{2} \) |
| 89 | \( 1 + 13.3T + 89T^{2} \) |
| 97 | \( 1 + 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.437972394696607077446657634917, −8.498496149990797424162435139671, −6.86771716586481223168617314399, −6.48785929272868817409697197732, −5.70513806839887417617469642285, −5.21178711868815795145102684837, −4.06924252117027764693510823505, −3.41335051165401718035626221423, −1.30443674283601494176442586575, 0,
1.30443674283601494176442586575, 3.41335051165401718035626221423, 4.06924252117027764693510823505, 5.21178711868815795145102684837, 5.70513806839887417617469642285, 6.48785929272868817409697197732, 6.86771716586481223168617314399, 8.498496149990797424162435139671, 9.437972394696607077446657634917