L(s) = 1 | + 3·2-s + 5·3-s + 4-s + 5·5-s + 15·6-s + 22·7-s − 21·8-s − 2·9-s + 15·10-s − 60·11-s + 5·12-s − 31·13-s + 66·14-s + 25·15-s − 71·16-s − 6·18-s − 61·19-s + 5·20-s + 110·21-s − 180·22-s + 78·23-s − 105·24-s + 25·25-s − 93·26-s − 145·27-s + 22·28-s − 69·29-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 0.962·3-s + 1/8·4-s + 0.447·5-s + 1.02·6-s + 1.18·7-s − 0.928·8-s − 0.0740·9-s + 0.474·10-s − 1.64·11-s + 0.120·12-s − 0.661·13-s + 1.25·14-s + 0.430·15-s − 1.10·16-s − 0.0785·18-s − 0.736·19-s + 0.0559·20-s + 1.14·21-s − 1.74·22-s + 0.707·23-s − 0.893·24-s + 1/5·25-s − 0.701·26-s − 1.03·27-s + 0.148·28-s − 0.441·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - p T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 3 T + p^{3} T^{2} \) |
| 3 | \( 1 - 5 T + p^{3} T^{2} \) |
| 7 | \( 1 - 22 T + p^{3} T^{2} \) |
| 11 | \( 1 + 60 T + p^{3} T^{2} \) |
| 13 | \( 1 + 31 T + p^{3} T^{2} \) |
| 19 | \( 1 + 61 T + p^{3} T^{2} \) |
| 23 | \( 1 - 78 T + p^{3} T^{2} \) |
| 29 | \( 1 + 69 T + p^{3} T^{2} \) |
| 31 | \( 1 - p T + p^{3} T^{2} \) |
| 37 | \( 1 + 56 T + p^{3} T^{2} \) |
| 41 | \( 1 - 6 T + p^{3} T^{2} \) |
| 43 | \( 1 + 538 T + p^{3} T^{2} \) |
| 47 | \( 1 + 465 T + p^{3} T^{2} \) |
| 53 | \( 1 - 723 T + p^{3} T^{2} \) |
| 59 | \( 1 + 753 T + p^{3} T^{2} \) |
| 61 | \( 1 + 35 T + p^{3} T^{2} \) |
| 67 | \( 1 + 322 T + p^{3} T^{2} \) |
| 71 | \( 1 - 99 T + p^{3} T^{2} \) |
| 73 | \( 1 - 1123 T + p^{3} T^{2} \) |
| 79 | \( 1 + 488 T + p^{3} T^{2} \) |
| 83 | \( 1 + 852 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1215 T + p^{3} T^{2} \) |
| 97 | \( 1 - 601 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.544528399557096754345455900432, −8.134407725059748451558695711714, −7.20360032885954818682103182571, −5.97672030756662731985538972714, −5.05331542222163665990118574718, −4.79390471490211124461628826399, −3.47966159695965311076628603463, −2.65577448858665765533323391791, −1.95040224017933876425603078939, 0,
1.95040224017933876425603078939, 2.65577448858665765533323391791, 3.47966159695965311076628603463, 4.79390471490211124461628826399, 5.05331542222163665990118574718, 5.97672030756662731985538972714, 7.20360032885954818682103182571, 8.134407725059748451558695711714, 8.544528399557096754345455900432