Properties

Label 2-1445-1.1-c3-0-258
Degree $2$
Conductor $1445$
Sign $-1$
Analytic cond. $85.2577$
Root an. cond. $9.23351$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 5·3-s + 4-s + 5·5-s + 15·6-s + 22·7-s − 21·8-s − 2·9-s + 15·10-s − 60·11-s + 5·12-s − 31·13-s + 66·14-s + 25·15-s − 71·16-s − 6·18-s − 61·19-s + 5·20-s + 110·21-s − 180·22-s + 78·23-s − 105·24-s + 25·25-s − 93·26-s − 145·27-s + 22·28-s − 69·29-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.962·3-s + 1/8·4-s + 0.447·5-s + 1.02·6-s + 1.18·7-s − 0.928·8-s − 0.0740·9-s + 0.474·10-s − 1.64·11-s + 0.120·12-s − 0.661·13-s + 1.25·14-s + 0.430·15-s − 1.10·16-s − 0.0785·18-s − 0.736·19-s + 0.0559·20-s + 1.14·21-s − 1.74·22-s + 0.707·23-s − 0.893·24-s + 1/5·25-s − 0.701·26-s − 1.03·27-s + 0.148·28-s − 0.441·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(85.2577\)
Root analytic conductor: \(9.23351\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1445,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - p T \)
17 \( 1 \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
3 \( 1 - 5 T + p^{3} T^{2} \)
7 \( 1 - 22 T + p^{3} T^{2} \)
11 \( 1 + 60 T + p^{3} T^{2} \)
13 \( 1 + 31 T + p^{3} T^{2} \)
19 \( 1 + 61 T + p^{3} T^{2} \)
23 \( 1 - 78 T + p^{3} T^{2} \)
29 \( 1 + 69 T + p^{3} T^{2} \)
31 \( 1 - p T + p^{3} T^{2} \)
37 \( 1 + 56 T + p^{3} T^{2} \)
41 \( 1 - 6 T + p^{3} T^{2} \)
43 \( 1 + 538 T + p^{3} T^{2} \)
47 \( 1 + 465 T + p^{3} T^{2} \)
53 \( 1 - 723 T + p^{3} T^{2} \)
59 \( 1 + 753 T + p^{3} T^{2} \)
61 \( 1 + 35 T + p^{3} T^{2} \)
67 \( 1 + 322 T + p^{3} T^{2} \)
71 \( 1 - 99 T + p^{3} T^{2} \)
73 \( 1 - 1123 T + p^{3} T^{2} \)
79 \( 1 + 488 T + p^{3} T^{2} \)
83 \( 1 + 852 T + p^{3} T^{2} \)
89 \( 1 - 1215 T + p^{3} T^{2} \)
97 \( 1 - 601 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.544528399557096754345455900432, −8.134407725059748451558695711714, −7.20360032885954818682103182571, −5.97672030756662731985538972714, −5.05331542222163665990118574718, −4.79390471490211124461628826399, −3.47966159695965311076628603463, −2.65577448858665765533323391791, −1.95040224017933876425603078939, 0, 1.95040224017933876425603078939, 2.65577448858665765533323391791, 3.47966159695965311076628603463, 4.79390471490211124461628826399, 5.05331542222163665990118574718, 5.97672030756662731985538972714, 7.20360032885954818682103182571, 8.134407725059748451558695711714, 8.544528399557096754345455900432

Graph of the $Z$-function along the critical line