L(s) = 1 | − 0.951i·2-s + 2.47i·3-s + 1.09·4-s + (−2.23 − 0.129i)5-s + 2.35·6-s + 0.533i·7-s − 2.94i·8-s − 3.12·9-s + (−0.123 + 2.12i)10-s + 4.67·11-s + 2.70i·12-s − 3.92i·13-s + 0.507·14-s + (0.320 − 5.52i)15-s − 0.614·16-s + ⋯ |
L(s) = 1 | − 0.672i·2-s + 1.42i·3-s + 0.547·4-s + (−0.998 − 0.0578i)5-s + 0.961·6-s + 0.201i·7-s − 1.04i·8-s − 1.04·9-s + (−0.0389 + 0.671i)10-s + 1.40·11-s + 0.781i·12-s − 1.08i·13-s + 0.135·14-s + (0.0826 − 1.42i)15-s − 0.153·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0578i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.862030009\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.862030009\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.23 + 0.129i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 0.951iT - 2T^{2} \) |
| 3 | \( 1 - 2.47iT - 3T^{2} \) |
| 7 | \( 1 - 0.533iT - 7T^{2} \) |
| 11 | \( 1 - 4.67T + 11T^{2} \) |
| 13 | \( 1 + 3.92iT - 13T^{2} \) |
| 19 | \( 1 - 1.00T + 19T^{2} \) |
| 23 | \( 1 + 5.73iT - 23T^{2} \) |
| 29 | \( 1 - 8.28T + 29T^{2} \) |
| 31 | \( 1 + 2.47T + 31T^{2} \) |
| 37 | \( 1 - 4.09iT - 37T^{2} \) |
| 41 | \( 1 + 0.814T + 41T^{2} \) |
| 43 | \( 1 - 6.43iT - 43T^{2} \) |
| 47 | \( 1 - 1.70iT - 47T^{2} \) |
| 53 | \( 1 + 8.16iT - 53T^{2} \) |
| 59 | \( 1 - 6.05T + 59T^{2} \) |
| 61 | \( 1 - 1.13T + 61T^{2} \) |
| 67 | \( 1 + 7.68iT - 67T^{2} \) |
| 71 | \( 1 + 6.94T + 71T^{2} \) |
| 73 | \( 1 - 12.0iT - 73T^{2} \) |
| 79 | \( 1 + 1.48T + 79T^{2} \) |
| 83 | \( 1 - 16.1iT - 83T^{2} \) |
| 89 | \( 1 - 12.0T + 89T^{2} \) |
| 97 | \( 1 - 0.228iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.796240859807401649005950987210, −8.867385809101846745977019708177, −8.183451879967679261243555040058, −7.03412159775428421131239956521, −6.24573314049736054417894586662, −4.99144654767177135467211768379, −4.17346826974794861647296994930, −3.50972961189138216777367028049, −2.75592786252868010874063886950, −0.952918860837954349531699598157,
1.11772119840871184574823370377, 2.10492569881992540097985401747, 3.44275834930147721129756800953, 4.49370464225278018765464629901, 5.86100236632660490162778265716, 6.58000507720531990188579783323, 7.22647118638894366990144789564, 7.45208647918136854893882739796, 8.499693694364000366428876420622, 9.073156352980652040485617529254