L(s) = 1 | + (1.11 − 1.93i)3-s + (1.11 + 1.93i)5-s + (2 − 1.73i)7-s + (−1 − 1.73i)9-s + (−1.5 + 2.59i)11-s − 13-s + 5.00·15-s + (3.73 − 6.47i)17-s + (1.5 + 2.59i)19-s + (−1.11 − 5.80i)21-s + (−1.88 − 3.25i)23-s + 2.23·27-s − 4.47·29-s + (2.5 − 4.33i)31-s + (3.35 + 5.80i)33-s + ⋯ |
L(s) = 1 | + (0.645 − 1.11i)3-s + (0.499 + 0.866i)5-s + (0.755 − 0.654i)7-s + (−0.333 − 0.577i)9-s + (−0.452 + 0.783i)11-s − 0.277·13-s + 1.29·15-s + (0.906 − 1.56i)17-s + (0.344 + 0.596i)19-s + (−0.243 − 1.26i)21-s + (−0.392 − 0.679i)23-s + 0.430·27-s − 0.830·29-s + (0.449 − 0.777i)31-s + (0.583 + 1.01i)33-s + ⋯ |
Λ(s)=(=(1456s/2ΓC(s)L(s)(0.605+0.795i)Λ(2−s)
Λ(s)=(=(1456s/2ΓC(s+1/2)L(s)(0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1456
= 24⋅7⋅13
|
Sign: |
0.605+0.795i
|
Analytic conductor: |
11.6262 |
Root analytic conductor: |
3.40972 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1456(417,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1456, ( :1/2), 0.605+0.795i)
|
Particular Values
L(1) |
≈ |
2.538998743 |
L(21) |
≈ |
2.538998743 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−2+1.73i)T |
| 13 | 1+T |
good | 3 | 1+(−1.11+1.93i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.11−1.93i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.5−2.59i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−3.73+6.47i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.5−2.59i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.88+3.25i)T+(−11.5+19.9i)T2 |
| 29 | 1+4.47T+29T2 |
| 31 | 1+(−2.5+4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4.35−7.54i)T+(−18.5+32.0i)T2 |
| 41 | 1−4.47T+41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1+(−0.736−1.27i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.736−1.27i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3.73+6.47i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.5+2.59i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.5−2.59i)T+(−33.5−58.0i)T2 |
| 71 | 1+8.94T+71T2 |
| 73 | 1+(5.35−9.27i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−5.35−9.27i)T+(−39.5+68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(−1.11−1.93i)T+(−44.5+77.0i)T2 |
| 97 | 1+17.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.564222070422563519301169369152, −8.241519480061036594486697281862, −7.59278680409530293448056594533, −7.26892796926927244876551351508, −6.40050956864377328904812130976, −5.30308062608915446196897066752, −4.28260959373508114776295645087, −2.83814372702961403383215518368, −2.29478276037662563121514322592, −1.10725356519076593075455531569,
1.38130982358383683771444019109, 2.64838452845639695590210996746, 3.69926878954685653487473631342, 4.57082295022008393980249525195, 5.48383092411319898480191329049, 5.87209179820867116533439991561, 7.59397953468103056663730610355, 8.264332197645826148036507641986, 9.064856202699270087965394092742, 9.311457896694164501359503092680