L(s) = 1 | − 1.41i·2-s − 2.00·4-s − 0.589i·5-s − 3.15·7-s + 2.82i·8-s − 0.833·10-s − 9.38i·11-s + 12.2·13-s + 4.45i·14-s + 4.00·16-s + 28.3i·17-s − 22.4·19-s + 1.17i·20-s − 13.2·22-s − 10.0i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s − 0.117i·5-s − 0.450·7-s + 0.353i·8-s − 0.0833·10-s − 0.853i·11-s + 0.939·13-s + 0.318i·14-s + 0.250·16-s + 1.66i·17-s − 1.17·19-s + 0.0589i·20-s − 0.603·22-s − 0.437i·23-s + ⋯ |
Λ(s)=(=(1458s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(1458s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1458
= 2⋅36
|
Sign: |
1
|
Analytic conductor: |
39.7276 |
Root analytic conductor: |
6.30298 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1458(1457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1458, ( :1), 1)
|
Particular Values
L(23) |
≈ |
1.438846502 |
L(21) |
≈ |
1.438846502 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
good | 5 | 1+0.589iT−25T2 |
| 7 | 1+3.15T+49T2 |
| 11 | 1+9.38iT−121T2 |
| 13 | 1−12.2T+169T2 |
| 17 | 1−28.3iT−289T2 |
| 19 | 1+22.4T+361T2 |
| 23 | 1+10.0iT−529T2 |
| 29 | 1−24.0iT−841T2 |
| 31 | 1+45.4T+961T2 |
| 37 | 1−31.5T+1.36e3T2 |
| 41 | 1−70.8iT−1.68e3T2 |
| 43 | 1+14.5T+1.84e3T2 |
| 47 | 1+55.3iT−2.20e3T2 |
| 53 | 1−25.4iT−2.80e3T2 |
| 59 | 1+28.6iT−3.48e3T2 |
| 61 | 1−113.T+3.72e3T2 |
| 67 | 1−50.0T+4.48e3T2 |
| 71 | 1−8.77iT−5.04e3T2 |
| 73 | 1−23.4T+5.32e3T2 |
| 79 | 1−132.T+6.24e3T2 |
| 83 | 1−67.1iT−6.88e3T2 |
| 89 | 1−72.7iT−7.92e3T2 |
| 97 | 1−157.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.302705205065056171966315989244, −8.526800945680272487566451660429, −8.168596304264759261091712993550, −6.63441501924639036909862771740, −6.12044057673371334387601414826, −5.06956105860214646569182316522, −3.90116021395459799261367875647, −3.37516057797265839630333079647, −2.08756476468498690097528654399, −0.940938014598044732413071589097,
0.50619688218407664804053777712, 2.14380287870122546436372983843, 3.40011536886970913730143861660, 4.36577531628789120151368123607, 5.24305744217178257583950306486, 6.17841647564885302023106813805, 6.93480516309525032069332354432, 7.52181051194335801009442542334, 8.550255336818476996399552360242, 9.255124765875452977460008835492