Properties

Label 2-1458-9.4-c1-0-15
Degree 22
Conductor 14581458
Sign 11
Analytic cond. 11.642111.6421
Root an. cond. 3.412063.41206
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1.30 − 2.26i)5-s + (2.56 + 4.44i)7-s + 0.999·8-s − 2.61·10-s + (−1.23 − 2.14i)11-s + (−1.90 + 3.29i)13-s + (2.56 − 4.44i)14-s + (−0.5 − 0.866i)16-s + 2.41·17-s + 5.05·19-s + (1.30 + 2.26i)20-s + (−1.23 + 2.14i)22-s + (−2.85 + 4.95i)23-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.583 − 1.01i)5-s + (0.970 + 1.68i)7-s + 0.353·8-s − 0.825·10-s + (−0.373 − 0.646i)11-s + (−0.527 + 0.912i)13-s + (0.686 − 1.18i)14-s + (−0.125 − 0.216i)16-s + 0.584·17-s + 1.16·19-s + (0.291 + 0.505i)20-s + (−0.264 + 0.457i)22-s + (−0.596 + 1.03i)23-s + ⋯

Functional equation

Λ(s)=(1458s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1458s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 14581458    =    2362 \cdot 3^{6}
Sign: 11
Analytic conductor: 11.642111.6421
Root analytic conductor: 3.412063.41206
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1458(973,)\chi_{1458} (973, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1458, ( :1/2), 1)(2,\ 1458,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.6349734111.634973411
L(12)L(\frac12) \approx 1.6349734111.634973411
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
3 1 1
good5 1+(1.30+2.26i)T+(2.54.33i)T2 1 + (-1.30 + 2.26i)T + (-2.5 - 4.33i)T^{2}
7 1+(2.564.44i)T+(3.5+6.06i)T2 1 + (-2.56 - 4.44i)T + (-3.5 + 6.06i)T^{2}
11 1+(1.23+2.14i)T+(5.5+9.52i)T2 1 + (1.23 + 2.14i)T + (-5.5 + 9.52i)T^{2}
13 1+(1.903.29i)T+(6.511.2i)T2 1 + (1.90 - 3.29i)T + (-6.5 - 11.2i)T^{2}
17 12.41T+17T2 1 - 2.41T + 17T^{2}
19 15.05T+19T2 1 - 5.05T + 19T^{2}
23 1+(2.854.95i)T+(11.519.9i)T2 1 + (2.85 - 4.95i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.813.13i)T+(14.5+25.1i)T2 1 + (-1.81 - 3.13i)T + (-14.5 + 25.1i)T^{2}
31 1+(2.01+3.48i)T+(15.526.8i)T2 1 + (-2.01 + 3.48i)T + (-15.5 - 26.8i)T^{2}
37 1+1.49T+37T2 1 + 1.49T + 37T^{2}
41 1+(5.178.95i)T+(20.535.5i)T2 1 + (5.17 - 8.95i)T + (-20.5 - 35.5i)T^{2}
43 1+(0.1280.222i)T+(21.5+37.2i)T2 1 + (-0.128 - 0.222i)T + (-21.5 + 37.2i)T^{2}
47 1+(3.62+6.27i)T+(23.5+40.7i)T2 1 + (3.62 + 6.27i)T + (-23.5 + 40.7i)T^{2}
53 114.4T+53T2 1 - 14.4T + 53T^{2}
59 1+(1.712.96i)T+(29.551.0i)T2 1 + (1.71 - 2.96i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.808.32i)T+(30.5+52.8i)T2 1 + (-4.80 - 8.32i)T + (-30.5 + 52.8i)T^{2}
67 1+(1.63+2.82i)T+(33.558.0i)T2 1 + (-1.63 + 2.82i)T + (-33.5 - 58.0i)T^{2}
71 1+7.55T+71T2 1 + 7.55T + 71T^{2}
73 13.93T+73T2 1 - 3.93T + 73T^{2}
79 1+(0.482+0.835i)T+(39.5+68.4i)T2 1 + (0.482 + 0.835i)T + (-39.5 + 68.4i)T^{2}
83 1+(2.20+3.82i)T+(41.5+71.8i)T2 1 + (2.20 + 3.82i)T + (-41.5 + 71.8i)T^{2}
89 16.51T+89T2 1 - 6.51T + 89T^{2}
97 1+(4.64+8.05i)T+(48.5+84.0i)T2 1 + (4.64 + 8.05i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.486890149161901905220492296546, −8.731046323867989289374617469082, −8.335879549446603276830383864658, −7.37213911933591070869526238638, −5.84169377662262858813665841055, −5.34234923101011666440817717600, −4.64951838941897042262854038611, −3.17045577224255383394893883945, −2.11106882218726426016184895999, −1.31635118850395789101004920857, 0.830951549510869611314560700481, 2.22503923468128261783554554033, 3.50978437933827345662445681396, 4.66962370864727999493567102522, 5.37389393544262362367956994886, 6.50907168958055422300368750632, 7.26999528424176170409875787482, 7.65011645404297052753597729251, 8.444637957942088226785145225040, 9.906847312180315887306439452835

Graph of the ZZ-function along the critical line