L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1.30 − 2.26i)5-s + (2.56 + 4.44i)7-s + 0.999·8-s − 2.61·10-s + (−1.23 − 2.14i)11-s + (−1.90 + 3.29i)13-s + (2.56 − 4.44i)14-s + (−0.5 − 0.866i)16-s + 2.41·17-s + 5.05·19-s + (1.30 + 2.26i)20-s + (−1.23 + 2.14i)22-s + (−2.85 + 4.95i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.583 − 1.01i)5-s + (0.970 + 1.68i)7-s + 0.353·8-s − 0.825·10-s + (−0.373 − 0.646i)11-s + (−0.527 + 0.912i)13-s + (0.686 − 1.18i)14-s + (−0.125 − 0.216i)16-s + 0.584·17-s + 1.16·19-s + (0.291 + 0.505i)20-s + (−0.264 + 0.457i)22-s + (−0.596 + 1.03i)23-s + ⋯ |
Λ(s)=(=(1458s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1458s/2ΓC(s+1/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1458
= 2⋅36
|
Sign: |
1
|
Analytic conductor: |
11.6421 |
Root analytic conductor: |
3.41206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1458(973,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1458, ( :1/2), 1)
|
Particular Values
L(1) |
≈ |
1.634973411 |
L(21) |
≈ |
1.634973411 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
good | 5 | 1+(−1.30+2.26i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−2.56−4.44i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.23+2.14i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.90−3.29i)T+(−6.5−11.2i)T2 |
| 17 | 1−2.41T+17T2 |
| 19 | 1−5.05T+19T2 |
| 23 | 1+(2.85−4.95i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.81−3.13i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.01+3.48i)T+(−15.5−26.8i)T2 |
| 37 | 1+1.49T+37T2 |
| 41 | 1+(5.17−8.95i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.128−0.222i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.62+6.27i)T+(−23.5+40.7i)T2 |
| 53 | 1−14.4T+53T2 |
| 59 | 1+(1.71−2.96i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.80−8.32i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.63+2.82i)T+(−33.5−58.0i)T2 |
| 71 | 1+7.55T+71T2 |
| 73 | 1−3.93T+73T2 |
| 79 | 1+(0.482+0.835i)T+(−39.5+68.4i)T2 |
| 83 | 1+(2.20+3.82i)T+(−41.5+71.8i)T2 |
| 89 | 1−6.51T+89T2 |
| 97 | 1+(4.64+8.05i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.486890149161901905220492296546, −8.731046323867989289374617469082, −8.335879549446603276830383864658, −7.37213911933591070869526238638, −5.84169377662262858813665841055, −5.34234923101011666440817717600, −4.64951838941897042262854038611, −3.17045577224255383394893883945, −2.11106882218726426016184895999, −1.31635118850395789101004920857,
0.830951549510869611314560700481, 2.22503923468128261783554554033, 3.50978437933827345662445681396, 4.66962370864727999493567102522, 5.37389393544262362367956994886, 6.50907168958055422300368750632, 7.26999528424176170409875787482, 7.65011645404297052753597729251, 8.444637957942088226785145225040, 9.906847312180315887306439452835