L(s) = 1 | + 2-s − 2.76·3-s + 4-s − 2.37·5-s − 2.76·6-s + 3.21·7-s + 8-s + 4.65·9-s − 2.37·10-s + 4.20·11-s − 2.76·12-s − 5.77·13-s + 3.21·14-s + 6.57·15-s + 16-s − 0.535·17-s + 4.65·18-s − 7.30·19-s − 2.37·20-s − 8.89·21-s + 4.20·22-s + 0.874·23-s − 2.76·24-s + 0.647·25-s − 5.77·26-s − 4.59·27-s + 3.21·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.59·3-s + 0.5·4-s − 1.06·5-s − 1.12·6-s + 1.21·7-s + 0.353·8-s + 1.55·9-s − 0.751·10-s + 1.26·11-s − 0.798·12-s − 1.60·13-s + 0.858·14-s + 1.69·15-s + 0.250·16-s − 0.129·17-s + 1.09·18-s − 1.67·19-s − 0.531·20-s − 1.94·21-s + 0.895·22-s + 0.182·23-s − 0.564·24-s + 0.129·25-s − 1.13·26-s − 0.883·27-s + 0.607·28-s + ⋯ |
Λ(s)=(=(1466s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1466s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.334696175 |
L(21) |
≈ |
1.334696175 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 733 | 1+T |
good | 3 | 1+2.76T+3T2 |
| 5 | 1+2.37T+5T2 |
| 7 | 1−3.21T+7T2 |
| 11 | 1−4.20T+11T2 |
| 13 | 1+5.77T+13T2 |
| 17 | 1+0.535T+17T2 |
| 19 | 1+7.30T+19T2 |
| 23 | 1−0.874T+23T2 |
| 29 | 1−3.90T+29T2 |
| 31 | 1−9.16T+31T2 |
| 37 | 1−1.62T+37T2 |
| 41 | 1−5.93T+41T2 |
| 43 | 1−9.62T+43T2 |
| 47 | 1+1.80T+47T2 |
| 53 | 1+3.26T+53T2 |
| 59 | 1−3.66T+59T2 |
| 61 | 1−9.94T+61T2 |
| 67 | 1−5.32T+67T2 |
| 71 | 1−14.5T+71T2 |
| 73 | 1−14.7T+73T2 |
| 79 | 1+12.4T+79T2 |
| 83 | 1+15.3T+83T2 |
| 89 | 1−9.71T+89T2 |
| 97 | 1−14.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.804404874368668367171563720777, −8.471113613801767941076497913829, −7.67104856693367987289547687734, −6.81773243105930187543601036375, −6.24521774722744571497312932441, −5.12932025066148753398153992920, −4.48763794189486312521177870630, −4.11526676491209406648488947478, −2.29342541528188133440289867015, −0.814293367361172536067878162554,
0.814293367361172536067878162554, 2.29342541528188133440289867015, 4.11526676491209406648488947478, 4.48763794189486312521177870630, 5.12932025066148753398153992920, 6.24521774722744571497312932441, 6.81773243105930187543601036375, 7.67104856693367987289547687734, 8.471113613801767941076497913829, 9.804404874368668367171563720777