L(s) = 1 | + 5.44·2-s − 9·3-s − 2.33·4-s + 36·5-s − 49.0·6-s − 187.·8-s + 81·9-s + 196.·10-s + 184.·11-s + 21.0·12-s + 147.·13-s − 324·15-s − 943.·16-s + 1.96e3·17-s + 441.·18-s + 1.89e3·19-s − 84.1·20-s + 1.00e3·22-s + 136.·23-s + 1.68e3·24-s − 1.82e3·25-s + 805.·26-s − 729·27-s − 1.25e3·29-s − 1.76e3·30-s + 8.96e3·31-s + 844.·32-s + ⋯ |
L(s) = 1 | + 0.962·2-s − 0.577·3-s − 0.0730·4-s + 0.643·5-s − 0.555·6-s − 1.03·8-s + 0.333·9-s + 0.620·10-s + 0.459·11-s + 0.0421·12-s + 0.242·13-s − 0.371·15-s − 0.921·16-s + 1.65·17-s + 0.320·18-s + 1.20·19-s − 0.0470·20-s + 0.442·22-s + 0.0539·23-s + 0.596·24-s − 0.585·25-s + 0.233·26-s − 0.192·27-s − 0.278·29-s − 0.357·30-s + 1.67·31-s + 0.145·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.698660200\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.698660200\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 9T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 5.44T + 32T^{2} \) |
| 5 | \( 1 - 36T + 3.12e3T^{2} \) |
| 11 | \( 1 - 184.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 147.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 1.96e3T + 1.41e6T^{2} \) |
| 19 | \( 1 - 1.89e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 136.T + 6.43e6T^{2} \) |
| 29 | \( 1 + 1.25e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 8.96e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.28e4T + 6.93e7T^{2} \) |
| 41 | \( 1 - 8.97e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.35e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + 2.00e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 9.33e3T + 4.18e8T^{2} \) |
| 59 | \( 1 - 8.86e3T + 7.14e8T^{2} \) |
| 61 | \( 1 + 4.11e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 5.53e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 6.38e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 4.12e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 1.69e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.01e5T + 3.93e9T^{2} \) |
| 89 | \( 1 - 8.71e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.18e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19289985383651485720853556257, −11.54671236992937161041205407819, −10.04104152857849535960409107043, −9.323694854004559267706260818217, −7.73888855441177545298502215249, −6.17308660688735500903120277548, −5.58783053482362562003933596407, −4.39315914171940491356431612961, −3.06159944040201632589000446740, −1.04175397356406014468170844194,
1.04175397356406014468170844194, 3.06159944040201632589000446740, 4.39315914171940491356431612961, 5.58783053482362562003933596407, 6.17308660688735500903120277548, 7.73888855441177545298502215249, 9.323694854004559267706260818217, 10.04104152857849535960409107043, 11.54671236992937161041205407819, 12.19289985383651485720853556257