L(s) = 1 | + 5.44·2-s − 9·3-s − 2.33·4-s + 36·5-s − 49.0·6-s − 187.·8-s + 81·9-s + 196.·10-s + 184.·11-s + 21.0·12-s + 147.·13-s − 324·15-s − 943.·16-s + 1.96e3·17-s + 441.·18-s + 1.89e3·19-s − 84.1·20-s + 1.00e3·22-s + 136.·23-s + 1.68e3·24-s − 1.82e3·25-s + 805.·26-s − 729·27-s − 1.25e3·29-s − 1.76e3·30-s + 8.96e3·31-s + 844.·32-s + ⋯ |
L(s) = 1 | + 0.962·2-s − 0.577·3-s − 0.0730·4-s + 0.643·5-s − 0.555·6-s − 1.03·8-s + 0.333·9-s + 0.620·10-s + 0.459·11-s + 0.0421·12-s + 0.242·13-s − 0.371·15-s − 0.921·16-s + 1.65·17-s + 0.320·18-s + 1.20·19-s − 0.0470·20-s + 0.442·22-s + 0.0539·23-s + 0.596·24-s − 0.585·25-s + 0.233·26-s − 0.192·27-s − 0.278·29-s − 0.357·30-s + 1.67·31-s + 0.145·32-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.698660200 |
L(21) |
≈ |
2.698660200 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+9T |
| 7 | 1 |
good | 2 | 1−5.44T+32T2 |
| 5 | 1−36T+3.12e3T2 |
| 11 | 1−184.T+1.61e5T2 |
| 13 | 1−147.T+3.71e5T2 |
| 17 | 1−1.96e3T+1.41e6T2 |
| 19 | 1−1.89e3T+2.47e6T2 |
| 23 | 1−136.T+6.43e6T2 |
| 29 | 1+1.25e3T+2.05e7T2 |
| 31 | 1−8.96e3T+2.86e7T2 |
| 37 | 1−1.28e4T+6.93e7T2 |
| 41 | 1−8.97e3T+1.15e8T2 |
| 43 | 1−1.35e4T+1.47e8T2 |
| 47 | 1+2.00e4T+2.29e8T2 |
| 53 | 1−9.33e3T+4.18e8T2 |
| 59 | 1−8.86e3T+7.14e8T2 |
| 61 | 1+4.11e4T+8.44e8T2 |
| 67 | 1+5.53e4T+1.35e9T2 |
| 71 | 1+6.38e4T+1.80e9T2 |
| 73 | 1−4.12e4T+2.07e9T2 |
| 79 | 1−1.69e4T+3.07e9T2 |
| 83 | 1+1.01e5T+3.93e9T2 |
| 89 | 1−8.71e4T+5.58e9T2 |
| 97 | 1+1.18e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.19289985383651485720853556257, −11.54671236992937161041205407819, −10.04104152857849535960409107043, −9.323694854004559267706260818217, −7.73888855441177545298502215249, −6.17308660688735500903120277548, −5.58783053482362562003933596407, −4.39315914171940491356431612961, −3.06159944040201632589000446740, −1.04175397356406014468170844194,
1.04175397356406014468170844194, 3.06159944040201632589000446740, 4.39315914171940491356431612961, 5.58783053482362562003933596407, 6.17308660688735500903120277548, 7.73888855441177545298502215249, 9.323694854004559267706260818217, 10.04104152857849535960409107043, 11.54671236992937161041205407819, 12.19289985383651485720853556257