L(s) = 1 | − 5.31·2-s + 9·3-s − 3.71·4-s + 103.·5-s − 47.8·6-s + 189.·8-s + 81·9-s − 550.·10-s + 653.·11-s − 33.4·12-s − 138.·13-s + 931.·15-s − 891.·16-s + 1.17e3·17-s − 430.·18-s − 1.71e3·19-s − 384.·20-s − 3.47e3·22-s − 4.02e3·23-s + 1.70e3·24-s + 7.58e3·25-s + 734.·26-s + 729·27-s + 2.64e3·29-s − 4.95e3·30-s − 2.87e3·31-s − 1.33e3·32-s + ⋯ |
L(s) = 1 | − 0.940·2-s + 0.577·3-s − 0.116·4-s + 1.85·5-s − 0.542·6-s + 1.04·8-s + 0.333·9-s − 1.74·10-s + 1.62·11-s − 0.0670·12-s − 0.226·13-s + 1.06·15-s − 0.870·16-s + 0.985·17-s − 0.313·18-s − 1.08·19-s − 0.215·20-s − 1.53·22-s − 1.58·23-s + 0.605·24-s + 2.42·25-s + 0.212·26-s + 0.192·27-s + 0.585·29-s − 1.00·30-s − 0.537·31-s − 0.231·32-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.041737097 |
L(21) |
≈ |
2.041737097 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9T |
| 7 | 1 |
good | 2 | 1+5.31T+32T2 |
| 5 | 1−103.T+3.12e3T2 |
| 11 | 1−653.T+1.61e5T2 |
| 13 | 1+138.T+3.71e5T2 |
| 17 | 1−1.17e3T+1.41e6T2 |
| 19 | 1+1.71e3T+2.47e6T2 |
| 23 | 1+4.02e3T+6.43e6T2 |
| 29 | 1−2.64e3T+2.05e7T2 |
| 31 | 1+2.87e3T+2.86e7T2 |
| 37 | 1−2.85e3T+6.93e7T2 |
| 41 | 1−216.T+1.15e8T2 |
| 43 | 1−2.92e3T+1.47e8T2 |
| 47 | 1−1.48e4T+2.29e8T2 |
| 53 | 1−2.11e4T+4.18e8T2 |
| 59 | 1−3.46e4T+7.14e8T2 |
| 61 | 1+8.75e3T+8.44e8T2 |
| 67 | 1+1.20e4T+1.35e9T2 |
| 71 | 1+3.55e4T+1.80e9T2 |
| 73 | 1−3.34e4T+2.07e9T2 |
| 79 | 1−4.31e4T+3.07e9T2 |
| 83 | 1+4.33e4T+3.93e9T2 |
| 89 | 1+1.03e5T+5.58e9T2 |
| 97 | 1+8.62e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.24021461025367975578381086043, −10.52854891473395275107743391318, −9.801520685781124159301607285382, −9.212669589709511611108954473714, −8.349820473367381836486921658888, −6.87817671375199741233615366752, −5.76759868748204443316294305813, −4.14312150386472702852850793792, −2.15498759034873486040431736349, −1.19969189940168022109989643484,
1.19969189940168022109989643484, 2.15498759034873486040431736349, 4.14312150386472702852850793792, 5.76759868748204443316294305813, 6.87817671375199741233615366752, 8.349820473367381836486921658888, 9.212669589709511611108954473714, 9.801520685781124159301607285382, 10.52854891473395275107743391318, 12.24021461025367975578381086043