Properties

Label 2-147-147.101-c1-0-10
Degree 22
Conductor 147147
Sign 0.914+0.403i0.914 + 0.403i
Analytic cond. 1.173801.17380
Root an. cond. 1.083421.08342
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.742 + 0.291i)2-s + (0.844 − 1.51i)3-s + (−0.999 − 0.927i)4-s + (3.49 + 2.38i)5-s + (1.06 − 0.876i)6-s + (−2.63 − 0.242i)7-s + (−1.16 − 2.41i)8-s + (−1.57 − 2.55i)9-s + (1.90 + 2.78i)10-s + (0.481 + 3.19i)11-s + (−2.24 + 0.727i)12-s + (1.47 − 1.17i)13-s + (−1.88 − 0.947i)14-s + (6.55 − 3.27i)15-s + (0.0439 + 0.586i)16-s + (−0.330 − 0.101i)17-s + ⋯
L(s)  = 1  + (0.524 + 0.206i)2-s + (0.487 − 0.872i)3-s + (−0.499 − 0.463i)4-s + (1.56 + 1.06i)5-s + (0.435 − 0.357i)6-s + (−0.995 − 0.0917i)7-s + (−0.411 − 0.854i)8-s + (−0.524 − 0.851i)9-s + (0.600 + 0.881i)10-s + (0.145 + 0.963i)11-s + (−0.648 + 0.210i)12-s + (0.410 − 0.327i)13-s + (−0.503 − 0.253i)14-s + (1.69 − 0.844i)15-s + (0.0109 + 0.146i)16-s + (−0.0801 − 0.0247i)17-s + ⋯

Functional equation

Λ(s)=(147s/2ΓC(s)L(s)=((0.914+0.403i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(147s/2ΓC(s+1/2)L(s)=((0.914+0.403i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 147147    =    3723 \cdot 7^{2}
Sign: 0.914+0.403i0.914 + 0.403i
Analytic conductor: 1.173801.17380
Root analytic conductor: 1.083421.08342
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ147(101,)\chi_{147} (101, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 147, ( :1/2), 0.914+0.403i)(2,\ 147,\ (\ :1/2),\ 0.914 + 0.403i)

Particular Values

L(1)L(1) \approx 1.561610.329149i1.56161 - 0.329149i
L(12)L(\frac12) \approx 1.561610.329149i1.56161 - 0.329149i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.844+1.51i)T 1 + (-0.844 + 1.51i)T
7 1+(2.63+0.242i)T 1 + (2.63 + 0.242i)T
good2 1+(0.7420.291i)T+(1.46+1.36i)T2 1 + (-0.742 - 0.291i)T + (1.46 + 1.36i)T^{2}
5 1+(3.492.38i)T+(1.82+4.65i)T2 1 + (-3.49 - 2.38i)T + (1.82 + 4.65i)T^{2}
11 1+(0.4813.19i)T+(10.5+3.24i)T2 1 + (-0.481 - 3.19i)T + (-10.5 + 3.24i)T^{2}
13 1+(1.47+1.17i)T+(2.8912.6i)T2 1 + (-1.47 + 1.17i)T + (2.89 - 12.6i)T^{2}
17 1+(0.330+0.101i)T+(14.0+9.57i)T2 1 + (0.330 + 0.101i)T + (14.0 + 9.57i)T^{2}
19 1+(3.792.19i)T+(9.516.4i)T2 1 + (3.79 - 2.19i)T + (9.5 - 16.4i)T^{2}
23 1+(0.6172.00i)T+(19.0+12.9i)T2 1 + (-0.617 - 2.00i)T + (-19.0 + 12.9i)T^{2}
29 1+(3.020.690i)T+(26.112.5i)T2 1 + (3.02 - 0.690i)T + (26.1 - 12.5i)T^{2}
31 1+(6.61+3.81i)T+(15.5+26.8i)T2 1 + (6.61 + 3.81i)T + (15.5 + 26.8i)T^{2}
37 1+(4.19+3.88i)T+(2.7636.8i)T2 1 + (-4.19 + 3.88i)T + (2.76 - 36.8i)T^{2}
41 1+(5.35+2.58i)T+(25.532.0i)T2 1 + (-5.35 + 2.58i)T + (25.5 - 32.0i)T^{2}
43 1+(1.13+0.545i)T+(26.8+33.6i)T2 1 + (1.13 + 0.545i)T + (26.8 + 33.6i)T^{2}
47 1+(0.2050.523i)T+(34.431.9i)T2 1 + (0.205 - 0.523i)T + (-34.4 - 31.9i)T^{2}
53 1+(0.01760.0190i)T+(3.9652.8i)T2 1 + (0.0176 - 0.0190i)T + (-3.96 - 52.8i)T^{2}
59 1+(2.74+1.87i)T+(21.554.9i)T2 1 + (-2.74 + 1.87i)T + (21.5 - 54.9i)T^{2}
61 1+(4.20+4.53i)T+(4.55+60.8i)T2 1 + (4.20 + 4.53i)T + (-4.55 + 60.8i)T^{2}
67 1+(6.45+11.1i)T+(33.558.0i)T2 1 + (-6.45 + 11.1i)T + (-33.5 - 58.0i)T^{2}
71 1+(7.011.60i)T+(63.9+30.8i)T2 1 + (-7.01 - 1.60i)T + (63.9 + 30.8i)T^{2}
73 1+(2.470.972i)T+(53.549.6i)T2 1 + (2.47 - 0.972i)T + (53.5 - 49.6i)T^{2}
79 1+(1.49+2.58i)T+(39.5+68.4i)T2 1 + (1.49 + 2.58i)T + (-39.5 + 68.4i)T^{2}
83 1+(5.31+6.66i)T+(18.480.9i)T2 1 + (-5.31 + 6.66i)T + (-18.4 - 80.9i)T^{2}
89 1+(1.88+0.284i)T+(85.0+26.2i)T2 1 + (1.88 + 0.284i)T + (85.0 + 26.2i)T^{2}
97 1+11.3iT97T2 1 + 11.3iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.03374277477196109200151249889, −12.75405713080069043083692174264, −10.76757535847554785946841871617, −9.707561947587011168033473133296, −9.217492453926486480611222021817, −7.24644725104330220106645028879, −6.34620297298104769727044824117, −5.74260319161519100005625326063, −3.56920722644674155297767972073, −2.06533037920862605213729691606, 2.62558687860289765025031630144, 4.01487436891207547417813785423, 5.21861274803070097193901292554, 6.14341680075367651153248551982, 8.545166922485943664577632889437, 9.012211126927867068647327062224, 9.773224546239354613394821583299, 11.02828593510534961799654757757, 12.59698082161247324244190540751, 13.28494360636994532382527317988

Graph of the ZZ-function along the critical line