L(s) = 1 | + (0.742 + 0.291i)2-s + (0.844 − 1.51i)3-s + (−0.999 − 0.927i)4-s + (3.49 + 2.38i)5-s + (1.06 − 0.876i)6-s + (−2.63 − 0.242i)7-s + (−1.16 − 2.41i)8-s + (−1.57 − 2.55i)9-s + (1.90 + 2.78i)10-s + (0.481 + 3.19i)11-s + (−2.24 + 0.727i)12-s + (1.47 − 1.17i)13-s + (−1.88 − 0.947i)14-s + (6.55 − 3.27i)15-s + (0.0439 + 0.586i)16-s + (−0.330 − 0.101i)17-s + ⋯ |
L(s) = 1 | + (0.524 + 0.206i)2-s + (0.487 − 0.872i)3-s + (−0.499 − 0.463i)4-s + (1.56 + 1.06i)5-s + (0.435 − 0.357i)6-s + (−0.995 − 0.0917i)7-s + (−0.411 − 0.854i)8-s + (−0.524 − 0.851i)9-s + (0.600 + 0.881i)10-s + (0.145 + 0.963i)11-s + (−0.648 + 0.210i)12-s + (0.410 − 0.327i)13-s + (−0.503 − 0.253i)14-s + (1.69 − 0.844i)15-s + (0.0109 + 0.146i)16-s + (−0.0801 − 0.0247i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 + 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56161 - 0.329149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56161 - 0.329149i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.844 + 1.51i)T \) |
| 7 | \( 1 + (2.63 + 0.242i)T \) |
good | 2 | \( 1 + (-0.742 - 0.291i)T + (1.46 + 1.36i)T^{2} \) |
| 5 | \( 1 + (-3.49 - 2.38i)T + (1.82 + 4.65i)T^{2} \) |
| 11 | \( 1 + (-0.481 - 3.19i)T + (-10.5 + 3.24i)T^{2} \) |
| 13 | \( 1 + (-1.47 + 1.17i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (0.330 + 0.101i)T + (14.0 + 9.57i)T^{2} \) |
| 19 | \( 1 + (3.79 - 2.19i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.617 - 2.00i)T + (-19.0 + 12.9i)T^{2} \) |
| 29 | \( 1 + (3.02 - 0.690i)T + (26.1 - 12.5i)T^{2} \) |
| 31 | \( 1 + (6.61 + 3.81i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.19 + 3.88i)T + (2.76 - 36.8i)T^{2} \) |
| 41 | \( 1 + (-5.35 + 2.58i)T + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (1.13 + 0.545i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (0.205 - 0.523i)T + (-34.4 - 31.9i)T^{2} \) |
| 53 | \( 1 + (0.0176 - 0.0190i)T + (-3.96 - 52.8i)T^{2} \) |
| 59 | \( 1 + (-2.74 + 1.87i)T + (21.5 - 54.9i)T^{2} \) |
| 61 | \( 1 + (4.20 + 4.53i)T + (-4.55 + 60.8i)T^{2} \) |
| 67 | \( 1 + (-6.45 + 11.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.01 - 1.60i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (2.47 - 0.972i)T + (53.5 - 49.6i)T^{2} \) |
| 79 | \( 1 + (1.49 + 2.58i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.31 + 6.66i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (1.88 + 0.284i)T + (85.0 + 26.2i)T^{2} \) |
| 97 | \( 1 + 11.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03374277477196109200151249889, −12.75405713080069043083692174264, −10.76757535847554785946841871617, −9.707561947587011168033473133296, −9.217492453926486480611222021817, −7.24644725104330220106645028879, −6.34620297298104769727044824117, −5.74260319161519100005625326063, −3.56920722644674155297767972073, −2.06533037920862605213729691606,
2.62558687860289765025031630144, 4.01487436891207547417813785423, 5.21861274803070097193901292554, 6.14341680075367651153248551982, 8.545166922485943664577632889437, 9.012211126927867068647327062224, 9.773224546239354613394821583299, 11.02828593510534961799654757757, 12.59698082161247324244190540751, 13.28494360636994532382527317988