L(s) = 1 | + (1.58 + 0.620i)2-s + (0.433 + 1.67i)3-s + (0.647 + 0.601i)4-s + (0.761 + 0.519i)5-s + (−0.354 + 2.91i)6-s + (−0.654 − 2.56i)7-s + (−0.822 − 1.70i)8-s + (−2.62 + 1.45i)9-s + (0.881 + 1.29i)10-s + (−0.0278 − 0.184i)11-s + (−0.727 + 1.34i)12-s + (−2.33 + 1.86i)13-s + (0.556 − 4.45i)14-s + (−0.540 + 1.50i)15-s + (−0.372 − 4.97i)16-s + (3.71 + 1.14i)17-s + ⋯ |
L(s) = 1 | + (1.11 + 0.438i)2-s + (0.250 + 0.968i)3-s + (0.323 + 0.300i)4-s + (0.340 + 0.232i)5-s + (−0.144 + 1.19i)6-s + (−0.247 − 0.968i)7-s + (−0.290 − 0.603i)8-s + (−0.874 + 0.484i)9-s + (0.278 + 0.408i)10-s + (−0.00838 − 0.0556i)11-s + (−0.209 + 0.388i)12-s + (−0.648 + 0.517i)13-s + (0.148 − 1.19i)14-s + (−0.139 + 0.387i)15-s + (−0.0931 − 1.24i)16-s + (0.901 + 0.278i)17-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(0.514−0.857i)Λ(2−s)
Λ(s)=(=(147s/2ΓC(s+1/2)L(s)(0.514−0.857i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
0.514−0.857i
|
Analytic conductor: |
1.17380 |
Root analytic conductor: |
1.08342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :1/2), 0.514−0.857i)
|
Particular Values
L(1) |
≈ |
1.63459+0.925765i |
L(21) |
≈ |
1.63459+0.925765i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.433−1.67i)T |
| 7 | 1+(0.654+2.56i)T |
good | 2 | 1+(−1.58−0.620i)T+(1.46+1.36i)T2 |
| 5 | 1+(−0.761−0.519i)T+(1.82+4.65i)T2 |
| 11 | 1+(0.0278+0.184i)T+(−10.5+3.24i)T2 |
| 13 | 1+(2.33−1.86i)T+(2.89−12.6i)T2 |
| 17 | 1+(−3.71−1.14i)T+(14.0+9.57i)T2 |
| 19 | 1+(−2.14+1.24i)T+(9.5−16.4i)T2 |
| 23 | 1+(−0.363−1.17i)T+(−19.0+12.9i)T2 |
| 29 | 1+(9.18−2.09i)T+(26.1−12.5i)T2 |
| 31 | 1+(−6.62−3.82i)T+(15.5+26.8i)T2 |
| 37 | 1+(−2.37+2.20i)T+(2.76−36.8i)T2 |
| 41 | 1+(5.40−2.60i)T+(25.5−32.0i)T2 |
| 43 | 1+(−4.29−2.06i)T+(26.8+33.6i)T2 |
| 47 | 1+(3.79−9.66i)T+(−34.4−31.9i)T2 |
| 53 | 1+(1.45−1.56i)T+(−3.96−52.8i)T2 |
| 59 | 1+(−8.18+5.58i)T+(21.5−54.9i)T2 |
| 61 | 1+(3.96+4.27i)T+(−4.55+60.8i)T2 |
| 67 | 1+(−5.08+8.81i)T+(−33.5−58.0i)T2 |
| 71 | 1+(0.367+0.0838i)T+(63.9+30.8i)T2 |
| 73 | 1+(7.84−3.08i)T+(53.5−49.6i)T2 |
| 79 | 1+(−7.67−13.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.837−1.04i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−5.96−0.899i)T+(85.0+26.2i)T2 |
| 97 | 1+5.60iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.64907019204422355414132255758, −12.50593905961764996709913624314, −11.20870690103644283038350475624, −10.00755739341221699766675500155, −9.474023773137531805851001397563, −7.72818248218421579730700029017, −6.47419162265056592883897678416, −5.27693865190300198193174730479, −4.25412162216836010876040076763, −3.19253298710051704439491001567,
2.20764313582445215297493365859, 3.34790411110413128544472933226, 5.28340042034895223060041009052, 5.93704481712643768470779217352, 7.54200176723334283656913741606, 8.664568245988073281066159616862, 9.788936122620001252935470007915, 11.62039339060623483297274133215, 12.05950033500824562908945551550, 13.00310413419353883274116252637