L(s) = 1 | + (−1.77 − 1.41i)2-s + (−1.67 − 0.435i)3-s + (0.698 + 3.05i)4-s + (3.64 + 1.75i)5-s + (2.35 + 3.14i)6-s + (0.439 − 2.60i)7-s + (1.11 − 2.32i)8-s + (2.62 + 1.45i)9-s + (−3.98 − 8.27i)10-s + (−0.206 − 0.164i)11-s + (0.160 − 5.43i)12-s + (−0.541 − 0.431i)13-s + (−4.46 + 4.00i)14-s + (−5.35 − 4.53i)15-s + (0.390 − 0.188i)16-s + (0.756 − 3.31i)17-s + ⋯ |
L(s) = 1 | + (−1.25 − 0.999i)2-s + (−0.967 − 0.251i)3-s + (0.349 + 1.52i)4-s + (1.63 + 0.785i)5-s + (0.961 + 1.28i)6-s + (0.166 − 0.986i)7-s + (0.395 − 0.820i)8-s + (0.873 + 0.486i)9-s + (−1.25 − 2.61i)10-s + (−0.0621 − 0.0495i)11-s + (0.0464 − 1.56i)12-s + (−0.150 − 0.119i)13-s + (−1.19 + 1.06i)14-s + (−1.38 − 1.17i)15-s + (0.0976 − 0.0470i)16-s + (0.183 − 0.803i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.180 + 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.180 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.459970 - 0.383193i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.459970 - 0.383193i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.67 + 0.435i)T \) |
| 7 | \( 1 + (-0.439 + 2.60i)T \) |
good | 2 | \( 1 + (1.77 + 1.41i)T + (0.445 + 1.94i)T^{2} \) |
| 5 | \( 1 + (-3.64 - 1.75i)T + (3.11 + 3.90i)T^{2} \) |
| 11 | \( 1 + (0.206 + 0.164i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (0.541 + 0.431i)T + (2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + (-0.756 + 3.31i)T + (-15.3 - 7.37i)T^{2} \) |
| 19 | \( 1 + 2.65iT - 19T^{2} \) |
| 23 | \( 1 + (-7.19 + 1.64i)T + (20.7 - 9.97i)T^{2} \) |
| 29 | \( 1 + (0.664 + 0.151i)T + (26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 - 4.03iT - 31T^{2} \) |
| 37 | \( 1 + (-1.08 + 4.76i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + (-4.22 - 2.03i)T + (25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (1.86 - 0.899i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (4.97 - 6.24i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (1.53 - 0.349i)T + (47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + (10.5 - 5.09i)T + (36.7 - 46.1i)T^{2} \) |
| 61 | \( 1 + (-2.91 - 0.664i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 - 5.56T + 67T^{2} \) |
| 71 | \( 1 + (-10.8 + 2.47i)T + (63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (9.38 - 7.48i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 - 4.72T + 79T^{2} \) |
| 83 | \( 1 + (2.28 + 2.86i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (2.41 + 3.03i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + 0.586iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65829523542882954618302160171, −11.17974722852040292050041181746, −10.82450800690396756071891595672, −9.988893568504623149229820652616, −9.256684217456741127396984790945, −7.47850111933171681273120138408, −6.61330400117859448953026358395, −5.15756709802532620682542161999, −2.74061020818602123020089892172, −1.22841610135225942240560001971,
1.54032320403391969970080419936, 5.14463394292722040477355056454, 5.82543422305809617057045249429, 6.64020097691445456587901214307, 8.265566045447944367037765153018, 9.316211859008255204849971158933, 9.760984499765504508079816506876, 10.83518480767434535866235723260, 12.32172422469965941865771893695, 13.14496132735445674315206272658