L(s) = 1 | + (−1.77 − 1.41i)2-s + (−1.67 − 0.435i)3-s + (0.698 + 3.05i)4-s + (3.64 + 1.75i)5-s + (2.35 + 3.14i)6-s + (0.439 − 2.60i)7-s + (1.11 − 2.32i)8-s + (2.62 + 1.45i)9-s + (−3.98 − 8.27i)10-s + (−0.206 − 0.164i)11-s + (0.160 − 5.43i)12-s + (−0.541 − 0.431i)13-s + (−4.46 + 4.00i)14-s + (−5.35 − 4.53i)15-s + (0.390 − 0.188i)16-s + (0.756 − 3.31i)17-s + ⋯ |
L(s) = 1 | + (−1.25 − 0.999i)2-s + (−0.967 − 0.251i)3-s + (0.349 + 1.52i)4-s + (1.63 + 0.785i)5-s + (0.961 + 1.28i)6-s + (0.166 − 0.986i)7-s + (0.395 − 0.820i)8-s + (0.873 + 0.486i)9-s + (−1.25 − 2.61i)10-s + (−0.0621 − 0.0495i)11-s + (0.0464 − 1.56i)12-s + (−0.150 − 0.119i)13-s + (−1.19 + 1.06i)14-s + (−1.38 − 1.17i)15-s + (0.0976 − 0.0470i)16-s + (0.183 − 0.803i)17-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(0.180+0.983i)Λ(2−s)
Λ(s)=(=(147s/2ΓC(s+1/2)L(s)(0.180+0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
0.180+0.983i
|
Analytic conductor: |
1.17380 |
Root analytic conductor: |
1.08342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(104,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :1/2), 0.180+0.983i)
|
Particular Values
L(1) |
≈ |
0.459970−0.383193i |
L(21) |
≈ |
0.459970−0.383193i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.67+0.435i)T |
| 7 | 1+(−0.439+2.60i)T |
good | 2 | 1+(1.77+1.41i)T+(0.445+1.94i)T2 |
| 5 | 1+(−3.64−1.75i)T+(3.11+3.90i)T2 |
| 11 | 1+(0.206+0.164i)T+(2.44+10.7i)T2 |
| 13 | 1+(0.541+0.431i)T+(2.89+12.6i)T2 |
| 17 | 1+(−0.756+3.31i)T+(−15.3−7.37i)T2 |
| 19 | 1+2.65iT−19T2 |
| 23 | 1+(−7.19+1.64i)T+(20.7−9.97i)T2 |
| 29 | 1+(0.664+0.151i)T+(26.1+12.5i)T2 |
| 31 | 1−4.03iT−31T2 |
| 37 | 1+(−1.08+4.76i)T+(−33.3−16.0i)T2 |
| 41 | 1+(−4.22−2.03i)T+(25.5+32.0i)T2 |
| 43 | 1+(1.86−0.899i)T+(26.8−33.6i)T2 |
| 47 | 1+(4.97−6.24i)T+(−10.4−45.8i)T2 |
| 53 | 1+(1.53−0.349i)T+(47.7−22.9i)T2 |
| 59 | 1+(10.5−5.09i)T+(36.7−46.1i)T2 |
| 61 | 1+(−2.91−0.664i)T+(54.9+26.4i)T2 |
| 67 | 1−5.56T+67T2 |
| 71 | 1+(−10.8+2.47i)T+(63.9−30.8i)T2 |
| 73 | 1+(9.38−7.48i)T+(16.2−71.1i)T2 |
| 79 | 1−4.72T+79T2 |
| 83 | 1+(2.28+2.86i)T+(−18.4+80.9i)T2 |
| 89 | 1+(2.41+3.03i)T+(−19.8+86.7i)T2 |
| 97 | 1+0.586iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.65829523542882954618302160171, −11.17974722852040292050041181746, −10.82450800690396756071891595672, −9.988893568504623149229820652616, −9.256684217456741127396984790945, −7.47850111933171681273120138408, −6.61330400117859448953026358395, −5.15756709802532620682542161999, −2.74061020818602123020089892172, −1.22841610135225942240560001971,
1.54032320403391969970080419936, 5.14463394292722040477355056454, 5.82543422305809617057045249429, 6.64020097691445456587901214307, 8.265566045447944367037765153018, 9.316211859008255204849971158933, 9.760984499765504508079816506876, 10.83518480767434535866235723260, 12.32172422469965941865771893695, 13.14496132735445674315206272658