L(s) = 1 | + (−1.95 − 1.56i)2-s + (1.73 − 0.0781i)3-s + (0.951 + 4.16i)4-s + (−0.242 − 0.116i)5-s + (−3.51 − 2.54i)6-s + (2.60 + 0.481i)7-s + (2.47 − 5.13i)8-s + (2.98 − 0.270i)9-s + (0.292 + 0.607i)10-s + (2.92 + 2.33i)11-s + (1.97 + 7.13i)12-s + (−4.15 − 3.31i)13-s + (−4.34 − 5.00i)14-s + (−0.428 − 0.183i)15-s + (−5.16 + 2.48i)16-s + (0.256 − 1.12i)17-s + ⋯ |
L(s) = 1 | + (−1.38 − 1.10i)2-s + (0.998 − 0.0451i)3-s + (0.475 + 2.08i)4-s + (−0.108 − 0.0522i)5-s + (−1.43 − 1.04i)6-s + (0.983 + 0.181i)7-s + (0.874 − 1.81i)8-s + (0.995 − 0.0901i)9-s + (0.0925 + 0.192i)10-s + (0.881 + 0.703i)11-s + (0.569 + 2.06i)12-s + (−1.15 − 0.919i)13-s + (−1.16 − 1.33i)14-s + (−0.110 − 0.0472i)15-s + (−1.29 + 0.621i)16-s + (0.0621 − 0.272i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.433 + 0.901i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.433 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.718747 - 0.451743i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.718747 - 0.451743i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.73 + 0.0781i)T \) |
| 7 | \( 1 + (-2.60 - 0.481i)T \) |
good | 2 | \( 1 + (1.95 + 1.56i)T + (0.445 + 1.94i)T^{2} \) |
| 5 | \( 1 + (0.242 + 0.116i)T + (3.11 + 3.90i)T^{2} \) |
| 11 | \( 1 + (-2.92 - 2.33i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (4.15 + 3.31i)T + (2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + (-0.256 + 1.12i)T + (-15.3 - 7.37i)T^{2} \) |
| 19 | \( 1 + 2.04iT - 19T^{2} \) |
| 23 | \( 1 + (5.12 - 1.16i)T + (20.7 - 9.97i)T^{2} \) |
| 29 | \( 1 + (-4.08 - 0.932i)T + (26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 - 6.91iT - 31T^{2} \) |
| 37 | \( 1 + (1.90 - 8.32i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + (-0.0133 - 0.00643i)T + (25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (-0.419 + 0.202i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-6.73 + 8.44i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (6.59 - 1.50i)T + (47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + (9.03 - 4.35i)T + (36.7 - 46.1i)T^{2} \) |
| 61 | \( 1 + (9.35 + 2.13i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + 1.25T + 67T^{2} \) |
| 71 | \( 1 + (13.9 - 3.18i)T + (63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (3.13 - 2.49i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 - 2.82T + 79T^{2} \) |
| 83 | \( 1 + (2.80 + 3.51i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-1.44 - 1.80i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + 2.81iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21638007456718437925595605872, −12.03244091956498871376672478135, −10.48468932135696850146315014485, −9.817917899151271075409819640672, −8.828036749720095662883715691788, −8.025579996379112688272862090680, −7.21436638459130427509131223161, −4.50760352388890182920776962522, −2.88802731217797671317387012021, −1.66060655812278351465315979367,
1.77264683538807771712933060735, 4.28084598329985614258793978224, 6.07932932301345865215287893608, 7.39480444817131043057556824174, 7.945479207033334408304553725337, 8.980988457127131446529045697641, 9.639262954668740106379529385521, 10.78064240468147479329387255713, 12.04698385237093749246608557574, 13.98270889120030855595442871838