L(s) = 1 | + (−1.95 − 1.56i)2-s + (1.73 − 0.0781i)3-s + (0.951 + 4.16i)4-s + (−0.242 − 0.116i)5-s + (−3.51 − 2.54i)6-s + (2.60 + 0.481i)7-s + (2.47 − 5.13i)8-s + (2.98 − 0.270i)9-s + (0.292 + 0.607i)10-s + (2.92 + 2.33i)11-s + (1.97 + 7.13i)12-s + (−4.15 − 3.31i)13-s + (−4.34 − 5.00i)14-s + (−0.428 − 0.183i)15-s + (−5.16 + 2.48i)16-s + (0.256 − 1.12i)17-s + ⋯ |
L(s) = 1 | + (−1.38 − 1.10i)2-s + (0.998 − 0.0451i)3-s + (0.475 + 2.08i)4-s + (−0.108 − 0.0522i)5-s + (−1.43 − 1.04i)6-s + (0.983 + 0.181i)7-s + (0.874 − 1.81i)8-s + (0.995 − 0.0901i)9-s + (0.0925 + 0.192i)10-s + (0.881 + 0.703i)11-s + (0.569 + 2.06i)12-s + (−1.15 − 0.919i)13-s + (−1.16 − 1.33i)14-s + (−0.110 − 0.0472i)15-s + (−1.29 + 0.621i)16-s + (0.0621 − 0.272i)17-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(0.433+0.901i)Λ(2−s)
Λ(s)=(=(147s/2ΓC(s+1/2)L(s)(0.433+0.901i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
0.433+0.901i
|
Analytic conductor: |
1.17380 |
Root analytic conductor: |
1.08342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(104,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :1/2), 0.433+0.901i)
|
Particular Values
L(1) |
≈ |
0.718747−0.451743i |
L(21) |
≈ |
0.718747−0.451743i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.73+0.0781i)T |
| 7 | 1+(−2.60−0.481i)T |
good | 2 | 1+(1.95+1.56i)T+(0.445+1.94i)T2 |
| 5 | 1+(0.242+0.116i)T+(3.11+3.90i)T2 |
| 11 | 1+(−2.92−2.33i)T+(2.44+10.7i)T2 |
| 13 | 1+(4.15+3.31i)T+(2.89+12.6i)T2 |
| 17 | 1+(−0.256+1.12i)T+(−15.3−7.37i)T2 |
| 19 | 1+2.04iT−19T2 |
| 23 | 1+(5.12−1.16i)T+(20.7−9.97i)T2 |
| 29 | 1+(−4.08−0.932i)T+(26.1+12.5i)T2 |
| 31 | 1−6.91iT−31T2 |
| 37 | 1+(1.90−8.32i)T+(−33.3−16.0i)T2 |
| 41 | 1+(−0.0133−0.00643i)T+(25.5+32.0i)T2 |
| 43 | 1+(−0.419+0.202i)T+(26.8−33.6i)T2 |
| 47 | 1+(−6.73+8.44i)T+(−10.4−45.8i)T2 |
| 53 | 1+(6.59−1.50i)T+(47.7−22.9i)T2 |
| 59 | 1+(9.03−4.35i)T+(36.7−46.1i)T2 |
| 61 | 1+(9.35+2.13i)T+(54.9+26.4i)T2 |
| 67 | 1+1.25T+67T2 |
| 71 | 1+(13.9−3.18i)T+(63.9−30.8i)T2 |
| 73 | 1+(3.13−2.49i)T+(16.2−71.1i)T2 |
| 79 | 1−2.82T+79T2 |
| 83 | 1+(2.80+3.51i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−1.44−1.80i)T+(−19.8+86.7i)T2 |
| 97 | 1+2.81iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.21638007456718437925595605872, −12.03244091956498871376672478135, −10.48468932135696850146315014485, −9.817917899151271075409819640672, −8.828036749720095662883715691788, −8.025579996379112688272862090680, −7.21436638459130427509131223161, −4.50760352388890182920776962522, −2.88802731217797671317387012021, −1.66060655812278351465315979367,
1.77264683538807771712933060735, 4.28084598329985614258793978224, 6.07932932301345865215287893608, 7.39480444817131043057556824174, 7.945479207033334408304553725337, 8.980988457127131446529045697641, 9.639262954668740106379529385521, 10.78064240468147479329387255713, 12.04698385237093749246608557574, 13.98270889120030855595442871838