Properties

Label 2-147-21.20-c5-0-13
Degree 22
Conductor 147147
Sign 0.573+0.818i-0.573 + 0.818i
Analytic cond. 23.576423.5764
Root an. cond. 4.855554.85555
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.31i·2-s + (14.0 + 6.83i)3-s − 37.1·4-s − 28.6·5-s + (−56.8 + 116. i)6-s − 42.3i·8-s + (149. + 191. i)9-s − 238. i·10-s + 596. i·11-s + (−519. − 253. i)12-s + 602. i·13-s + (−401. − 196. i)15-s − 834.·16-s + 154.·17-s + (−1.59e3 + 1.24e3i)18-s − 2.86e3i·19-s + ⋯
L(s)  = 1  + 1.46i·2-s + (0.898 + 0.438i)3-s − 1.15·4-s − 0.513·5-s + (−0.644 + 1.32i)6-s − 0.234i·8-s + (0.615 + 0.788i)9-s − 0.754i·10-s + 1.48i·11-s + (−1.04 − 0.508i)12-s + 0.988i·13-s + (−0.461 − 0.225i)15-s − 0.815·16-s + 0.129·17-s + (−1.15 + 0.904i)18-s − 1.82i·19-s + ⋯

Functional equation

Λ(s)=(147s/2ΓC(s)L(s)=((0.573+0.818i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 + 0.818i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(147s/2ΓC(s+5/2)L(s)=((0.573+0.818i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.573 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 147147    =    3723 \cdot 7^{2}
Sign: 0.573+0.818i-0.573 + 0.818i
Analytic conductor: 23.576423.5764
Root analytic conductor: 4.855554.85555
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ147(146,)\chi_{147} (146, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 147, ( :5/2), 0.573+0.818i)(2,\ 147,\ (\ :5/2),\ -0.573 + 0.818i)

Particular Values

L(3)L(3) \approx 1.7379660141.737966014
L(12)L(\frac12) \approx 1.7379660141.737966014
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(14.06.83i)T 1 + (-14.0 - 6.83i)T
7 1 1
good2 18.31iT32T2 1 - 8.31iT - 32T^{2}
5 1+28.6T+3.12e3T2 1 + 28.6T + 3.12e3T^{2}
11 1596.iT1.61e5T2 1 - 596. iT - 1.61e5T^{2}
13 1602.iT3.71e5T2 1 - 602. iT - 3.71e5T^{2}
17 1154.T+1.41e6T2 1 - 154.T + 1.41e6T^{2}
19 1+2.86e3iT2.47e6T2 1 + 2.86e3iT - 2.47e6T^{2}
23 1+3.78e3iT6.43e6T2 1 + 3.78e3iT - 6.43e6T^{2}
29 12.85e3iT2.05e7T2 1 - 2.85e3iT - 2.05e7T^{2}
31 13.22e3iT2.86e7T2 1 - 3.22e3iT - 2.86e7T^{2}
37 1+1.04e4T+6.93e7T2 1 + 1.04e4T + 6.93e7T^{2}
41 1+6.92e3T+1.15e8T2 1 + 6.92e3T + 1.15e8T^{2}
43 13.80e3T+1.47e8T2 1 - 3.80e3T + 1.47e8T^{2}
47 11.57e4T+2.29e8T2 1 - 1.57e4T + 2.29e8T^{2}
53 14.78e3iT4.18e8T2 1 - 4.78e3iT - 4.18e8T^{2}
59 13.34e4T+7.14e8T2 1 - 3.34e4T + 7.14e8T^{2}
61 14.51e4iT8.44e8T2 1 - 4.51e4iT - 8.44e8T^{2}
67 1+4.95e4T+1.35e9T2 1 + 4.95e4T + 1.35e9T^{2}
71 13.59e4iT1.80e9T2 1 - 3.59e4iT - 1.80e9T^{2}
73 12.67e4iT2.07e9T2 1 - 2.67e4iT - 2.07e9T^{2}
79 16.05e3T+3.07e9T2 1 - 6.05e3T + 3.07e9T^{2}
83 13.62e4T+3.93e9T2 1 - 3.62e4T + 3.93e9T^{2}
89 17.63e4T+5.58e9T2 1 - 7.63e4T + 5.58e9T^{2}
97 15.19e4iT8.58e9T2 1 - 5.19e4iT - 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.22815590550863334210579554305, −11.93373084893535618200888348762, −10.48437881883470860905538944222, −9.194827982035599465556132803089, −8.579472992510139660807483140883, −7.30320075550936058803405252217, −6.87532680747972025371900572654, −4.95280336983184359835980275803, −4.24052745381365302478500142369, −2.31303060950545163854569927782, 0.51574989127411784404867736323, 1.78533236293613374808074709750, 3.30340951809081792423138486185, 3.72017855290844555337991239136, 5.86379253329199021023252385137, 7.64756277310057608220927351930, 8.435075542801821340883782424189, 9.619223716011959293621594174023, 10.52516429873967837019093553481, 11.65188339382437985972401278205

Graph of the ZZ-function along the critical line