L(s) = 1 | + 8.31i·2-s + (14.0 + 6.83i)3-s − 37.1·4-s − 28.6·5-s + (−56.8 + 116. i)6-s − 42.3i·8-s + (149. + 191. i)9-s − 238. i·10-s + 596. i·11-s + (−519. − 253. i)12-s + 602. i·13-s + (−401. − 196. i)15-s − 834.·16-s + 154.·17-s + (−1.59e3 + 1.24e3i)18-s − 2.86e3i·19-s + ⋯ |
L(s) = 1 | + 1.46i·2-s + (0.898 + 0.438i)3-s − 1.15·4-s − 0.513·5-s + (−0.644 + 1.32i)6-s − 0.234i·8-s + (0.615 + 0.788i)9-s − 0.754i·10-s + 1.48i·11-s + (−1.04 − 0.508i)12-s + 0.988i·13-s + (−0.461 − 0.225i)15-s − 0.815·16-s + 0.129·17-s + (−1.15 + 0.904i)18-s − 1.82i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 + 0.818i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.573 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.737966014\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.737966014\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-14.0 - 6.83i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 8.31iT - 32T^{2} \) |
| 5 | \( 1 + 28.6T + 3.12e3T^{2} \) |
| 11 | \( 1 - 596. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 602. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 154.T + 1.41e6T^{2} \) |
| 19 | \( 1 + 2.86e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 3.78e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 2.85e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 3.22e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 + 1.04e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + 6.92e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 3.80e3T + 1.47e8T^{2} \) |
| 47 | \( 1 - 1.57e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 4.78e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 3.34e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 4.51e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 4.95e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 3.59e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 - 2.67e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.05e3T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.62e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 7.63e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 5.19e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.22815590550863334210579554305, −11.93373084893535618200888348762, −10.48437881883470860905538944222, −9.194827982035599465556132803089, −8.579472992510139660807483140883, −7.30320075550936058803405252217, −6.87532680747972025371900572654, −4.95280336983184359835980275803, −4.24052745381365302478500142369, −2.31303060950545163854569927782,
0.51574989127411784404867736323, 1.78533236293613374808074709750, 3.30340951809081792423138486185, 3.72017855290844555337991239136, 5.86379253329199021023252385137, 7.64756277310057608220927351930, 8.435075542801821340883782424189, 9.619223716011959293621594174023, 10.52516429873967837019093553481, 11.65188339382437985972401278205