L(s) = 1 | + 8.31i·2-s + (14.0 + 6.83i)3-s − 37.1·4-s − 28.6·5-s + (−56.8 + 116. i)6-s − 42.3i·8-s + (149. + 191. i)9-s − 238. i·10-s + 596. i·11-s + (−519. − 253. i)12-s + 602. i·13-s + (−401. − 196. i)15-s − 834.·16-s + 154.·17-s + (−1.59e3 + 1.24e3i)18-s − 2.86e3i·19-s + ⋯ |
L(s) = 1 | + 1.46i·2-s + (0.898 + 0.438i)3-s − 1.15·4-s − 0.513·5-s + (−0.644 + 1.32i)6-s − 0.234i·8-s + (0.615 + 0.788i)9-s − 0.754i·10-s + 1.48i·11-s + (−1.04 − 0.508i)12-s + 0.988i·13-s + (−0.461 − 0.225i)15-s − 0.815·16-s + 0.129·17-s + (−1.15 + 0.904i)18-s − 1.82i·19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.573+0.818i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.573+0.818i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.573+0.818i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(146,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.573+0.818i)
|
Particular Values
L(3) |
≈ |
1.737966014 |
L(21) |
≈ |
1.737966014 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−14.0−6.83i)T |
| 7 | 1 |
good | 2 | 1−8.31iT−32T2 |
| 5 | 1+28.6T+3.12e3T2 |
| 11 | 1−596.iT−1.61e5T2 |
| 13 | 1−602.iT−3.71e5T2 |
| 17 | 1−154.T+1.41e6T2 |
| 19 | 1+2.86e3iT−2.47e6T2 |
| 23 | 1+3.78e3iT−6.43e6T2 |
| 29 | 1−2.85e3iT−2.05e7T2 |
| 31 | 1−3.22e3iT−2.86e7T2 |
| 37 | 1+1.04e4T+6.93e7T2 |
| 41 | 1+6.92e3T+1.15e8T2 |
| 43 | 1−3.80e3T+1.47e8T2 |
| 47 | 1−1.57e4T+2.29e8T2 |
| 53 | 1−4.78e3iT−4.18e8T2 |
| 59 | 1−3.34e4T+7.14e8T2 |
| 61 | 1−4.51e4iT−8.44e8T2 |
| 67 | 1+4.95e4T+1.35e9T2 |
| 71 | 1−3.59e4iT−1.80e9T2 |
| 73 | 1−2.67e4iT−2.07e9T2 |
| 79 | 1−6.05e3T+3.07e9T2 |
| 83 | 1−3.62e4T+3.93e9T2 |
| 89 | 1−7.63e4T+5.58e9T2 |
| 97 | 1−5.19e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.22815590550863334210579554305, −11.93373084893535618200888348762, −10.48437881883470860905538944222, −9.194827982035599465556132803089, −8.579472992510139660807483140883, −7.30320075550936058803405252217, −6.87532680747972025371900572654, −4.95280336983184359835980275803, −4.24052745381365302478500142369, −2.31303060950545163854569927782,
0.51574989127411784404867736323, 1.78533236293613374808074709750, 3.30340951809081792423138486185, 3.72017855290844555337991239136, 5.86379253329199021023252385137, 7.64756277310057608220927351930, 8.435075542801821340883782424189, 9.619223716011959293621594174023, 10.52516429873967837019093553481, 11.65188339382437985972401278205