L(s) = 1 | + 10.3i·2-s + (12.5 − 9.28i)3-s − 74.8·4-s + 31.7·5-s + (95.9 + 129. i)6-s − 442. i·8-s + (70.5 − 232. i)9-s + 328. i·10-s + 453. i·11-s + (−936. + 694. i)12-s + 551. i·13-s + (397. − 294. i)15-s + 2.17e3·16-s + 538.·17-s + (2.40e3 + 729. i)18-s + 1.36e3i·19-s + ⋯ |
L(s) = 1 | + 1.82i·2-s + (0.803 − 0.595i)3-s − 2.33·4-s + 0.567·5-s + (1.08 + 1.46i)6-s − 2.44i·8-s + (0.290 − 0.956i)9-s + 1.03i·10-s + 1.13i·11-s + (−1.87 + 1.39i)12-s + 0.905i·13-s + (0.456 − 0.338i)15-s + 2.12·16-s + 0.451·17-s + (1.74 + 0.530i)18-s + 0.868i·19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.997−0.0755i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.997−0.0755i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.997−0.0755i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(146,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.997−0.0755i)
|
Particular Values
L(3) |
≈ |
2.065256194 |
L(21) |
≈ |
2.065256194 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−12.5+9.28i)T |
| 7 | 1 |
good | 2 | 1−10.3iT−32T2 |
| 5 | 1−31.7T+3.12e3T2 |
| 11 | 1−453.iT−1.61e5T2 |
| 13 | 1−551.iT−3.71e5T2 |
| 17 | 1−538.T+1.41e6T2 |
| 19 | 1−1.36e3iT−2.47e6T2 |
| 23 | 1−3.23e3iT−6.43e6T2 |
| 29 | 1−1.60e3iT−2.05e7T2 |
| 31 | 1−7.06e3iT−2.86e7T2 |
| 37 | 1+1.95e3T+6.93e7T2 |
| 41 | 1−1.80e3T+1.15e8T2 |
| 43 | 1−7.88e3T+1.47e8T2 |
| 47 | 1+6.09e3T+2.29e8T2 |
| 53 | 1+1.41e4iT−4.18e8T2 |
| 59 | 1−1.69e4T+7.14e8T2 |
| 61 | 1+2.97e4iT−8.44e8T2 |
| 67 | 1−1.36e4T+1.35e9T2 |
| 71 | 1−3.13e4iT−1.80e9T2 |
| 73 | 1+9.82e3iT−2.07e9T2 |
| 79 | 1−9.97e4T+3.07e9T2 |
| 83 | 1+7.95e4T+3.93e9T2 |
| 89 | 1−953.T+5.58e9T2 |
| 97 | 1−1.15e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.11242847235928724735000457446, −12.14422388142696222982511136741, −9.840315142216608631546996718557, −9.261714412127142254704397946972, −8.130111738427793388703526316662, −7.27067183446692306916048016564, −6.49348034959658641077974256776, −5.29563066432323496730273193861, −3.86560714547947192078378353799, −1.67259314751575459525657570244,
0.65387480604710698956255772656, 2.29843476779164296233528912695, 3.14265616060194153386868106795, 4.30258598551283273855965262265, 5.61818714256207048403805769753, 8.066264798800074743763607551732, 8.962405921018631973178574005881, 9.837205170684750236540164313221, 10.58734574080317143693081177937, 11.38169691268023193830332433379