L(s) = 1 | − 3·3-s + 2·5-s + 4·7-s + 6·9-s + 2·11-s + 5·13-s − 6·15-s + 4·17-s − 2·19-s − 12·21-s − 23-s − 25-s − 9·27-s + 7·29-s + 3·31-s − 6·33-s + 8·35-s − 2·37-s − 15·39-s − 9·41-s − 8·43-s + 12·45-s − 9·47-s + 9·49-s − 12·51-s − 2·53-s + 4·55-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 0.894·5-s + 1.51·7-s + 2·9-s + 0.603·11-s + 1.38·13-s − 1.54·15-s + 0.970·17-s − 0.458·19-s − 2.61·21-s − 0.208·23-s − 1/5·25-s − 1.73·27-s + 1.29·29-s + 0.538·31-s − 1.04·33-s + 1.35·35-s − 0.328·37-s − 2.40·39-s − 1.40·41-s − 1.21·43-s + 1.78·45-s − 1.31·47-s + 9/7·49-s − 1.68·51-s − 0.274·53-s + 0.539·55-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1472s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.553218770 |
L(21) |
≈ |
1.553218770 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+T |
good | 3 | 1+pT+pT2 |
| 5 | 1−2T+pT2 |
| 7 | 1−4T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−5T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1+2T+pT2 |
| 29 | 1−7T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+9T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+9T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−14T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1+3T+pT2 |
| 79 | 1−6T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.866992454756712207798623866216, −8.608238956261300097073169258146, −7.940995723732562677345333914110, −6.56889089382194248049775428165, −6.29658206116634366505284597932, −5.28615499787164158880149394506, −4.88899916461674802073833414510, −3.75737483622489943039302637500, −1.75965596937335757332008532480, −1.11834268237837652771743629830,
1.11834268237837652771743629830, 1.75965596937335757332008532480, 3.75737483622489943039302637500, 4.88899916461674802073833414510, 5.28615499787164158880149394506, 6.29658206116634366505284597932, 6.56889089382194248049775428165, 7.940995723732562677345333914110, 8.608238956261300097073169258146, 9.866992454756712207798623866216