Properties

Label 2-1472-1.1-c3-0-1
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.48·3-s − 1.44·5-s − 5.95·7-s + 3.06·9-s − 34.3·11-s − 76.5·13-s + 7.90·15-s − 13.1·17-s − 45.0·19-s + 32.6·21-s + 23·23-s − 122.·25-s + 131.·27-s − 92.3·29-s − 231.·31-s + 188.·33-s + 8.59·35-s − 438.·37-s + 419.·39-s + 91.0·41-s − 415.·43-s − 4.41·45-s + 476.·47-s − 307.·49-s + 71.9·51-s + 262.·53-s + 49.4·55-s + ⋯
L(s)  = 1  − 1.05·3-s − 0.129·5-s − 0.321·7-s + 0.113·9-s − 0.940·11-s − 1.63·13-s + 0.136·15-s − 0.187·17-s − 0.543·19-s + 0.339·21-s + 0.208·23-s − 0.983·25-s + 0.935·27-s − 0.591·29-s − 1.33·31-s + 0.992·33-s + 0.0414·35-s − 1.94·37-s + 1.72·39-s + 0.346·41-s − 1.47·43-s − 0.0146·45-s + 1.48·47-s − 0.896·49-s + 0.197·51-s + 0.679·53-s + 0.121·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0006944176300\)
\(L(\frac12)\) \(\approx\) \(0.0006944176300\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 5.48T + 27T^{2} \)
5 \( 1 + 1.44T + 125T^{2} \)
7 \( 1 + 5.95T + 343T^{2} \)
11 \( 1 + 34.3T + 1.33e3T^{2} \)
13 \( 1 + 76.5T + 2.19e3T^{2} \)
17 \( 1 + 13.1T + 4.91e3T^{2} \)
19 \( 1 + 45.0T + 6.85e3T^{2} \)
29 \( 1 + 92.3T + 2.43e4T^{2} \)
31 \( 1 + 231.T + 2.97e4T^{2} \)
37 \( 1 + 438.T + 5.06e4T^{2} \)
41 \( 1 - 91.0T + 6.89e4T^{2} \)
43 \( 1 + 415.T + 7.95e4T^{2} \)
47 \( 1 - 476.T + 1.03e5T^{2} \)
53 \( 1 - 262.T + 1.48e5T^{2} \)
59 \( 1 - 352.T + 2.05e5T^{2} \)
61 \( 1 + 685.T + 2.26e5T^{2} \)
67 \( 1 + 543.T + 3.00e5T^{2} \)
71 \( 1 - 840.T + 3.57e5T^{2} \)
73 \( 1 - 195.T + 3.89e5T^{2} \)
79 \( 1 + 337.T + 4.93e5T^{2} \)
83 \( 1 + 1.26e3T + 5.71e5T^{2} \)
89 \( 1 + 1.11e3T + 7.04e5T^{2} \)
97 \( 1 + 605.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.260404853004556692954883114613, −8.268852778427304724447964183647, −7.32578171171857391853342630122, −6.76385450109715637109244679418, −5.56361394173020594796069319176, −5.27808374325976344377410163808, −4.22848031566057527304563180238, −2.97914530792425302563464686971, −1.92833059935984270441551006022, −0.01274061891385634538645032817, 0.01274061891385634538645032817, 1.92833059935984270441551006022, 2.97914530792425302563464686971, 4.22848031566057527304563180238, 5.27808374325976344377410163808, 5.56361394173020594796069319176, 6.76385450109715637109244679418, 7.32578171171857391853342630122, 8.268852778427304724447964183647, 9.260404853004556692954883114613

Graph of the $Z$-function along the critical line