Properties

Label 2-1472-1.1-c3-0-114
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.869·3-s + 5.39·5-s + 27.1·7-s − 26.2·9-s − 19.5·11-s − 5.93·13-s + 4.68·15-s + 10.9·17-s − 15.0·19-s + 23.6·21-s + 23·23-s − 95.9·25-s − 46.3·27-s − 129.·29-s − 98.4·31-s − 16.9·33-s + 146.·35-s − 303.·37-s − 5.16·39-s + 32.8·41-s + 201.·43-s − 141.·45-s − 226.·47-s + 396.·49-s + 9.54·51-s − 75.1·53-s − 105.·55-s + ⋯
L(s)  = 1  + 0.167·3-s + 0.482·5-s + 1.46·7-s − 0.971·9-s − 0.534·11-s − 0.126·13-s + 0.0807·15-s + 0.156·17-s − 0.181·19-s + 0.245·21-s + 0.208·23-s − 0.767·25-s − 0.330·27-s − 0.830·29-s − 0.570·31-s − 0.0895·33-s + 0.707·35-s − 1.34·37-s − 0.0211·39-s + 0.125·41-s + 0.716·43-s − 0.468·45-s − 0.703·47-s + 1.15·49-s + 0.0262·51-s − 0.194·53-s − 0.257·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 0.869T + 27T^{2} \)
5 \( 1 - 5.39T + 125T^{2} \)
7 \( 1 - 27.1T + 343T^{2} \)
11 \( 1 + 19.5T + 1.33e3T^{2} \)
13 \( 1 + 5.93T + 2.19e3T^{2} \)
17 \( 1 - 10.9T + 4.91e3T^{2} \)
19 \( 1 + 15.0T + 6.85e3T^{2} \)
29 \( 1 + 129.T + 2.43e4T^{2} \)
31 \( 1 + 98.4T + 2.97e4T^{2} \)
37 \( 1 + 303.T + 5.06e4T^{2} \)
41 \( 1 - 32.8T + 6.89e4T^{2} \)
43 \( 1 - 201.T + 7.95e4T^{2} \)
47 \( 1 + 226.T + 1.03e5T^{2} \)
53 \( 1 + 75.1T + 1.48e5T^{2} \)
59 \( 1 + 533.T + 2.05e5T^{2} \)
61 \( 1 + 254.T + 2.26e5T^{2} \)
67 \( 1 + 425.T + 3.00e5T^{2} \)
71 \( 1 - 201.T + 3.57e5T^{2} \)
73 \( 1 + 55.1T + 3.89e5T^{2} \)
79 \( 1 - 59.2T + 4.93e5T^{2} \)
83 \( 1 + 678.T + 5.71e5T^{2} \)
89 \( 1 - 774.T + 7.04e5T^{2} \)
97 \( 1 - 1.12e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.699791289671284302635538580939, −7.954130287233042989371379774823, −7.37023394859753013639162157551, −6.05852686529879409119463490593, −5.39989182351613352474731601110, −4.69699274959453350568210516867, −3.47672622399664893278054428752, −2.33344957230774340014025764665, −1.56892563849337081818485043626, 0, 1.56892563849337081818485043626, 2.33344957230774340014025764665, 3.47672622399664893278054428752, 4.69699274959453350568210516867, 5.39989182351613352474731601110, 6.05852686529879409119463490593, 7.37023394859753013639162157551, 7.954130287233042989371379774823, 8.699791289671284302635538580939

Graph of the $Z$-function along the critical line