Properties

Label 2-1472-1.1-c3-0-124
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.14·3-s + 3.35·5-s − 27.3·7-s + 39.3·9-s + 30.4·11-s − 6.55·13-s + 27.3·15-s + 5.92·17-s − 107.·19-s − 222.·21-s + 23·23-s − 113.·25-s + 100.·27-s − 272.·29-s − 12.6·31-s + 247.·33-s − 91.6·35-s − 343.·37-s − 53.4·39-s − 80.6·41-s − 24.2·43-s + 131.·45-s − 281.·47-s + 405.·49-s + 48.2·51-s + 647.·53-s + 101.·55-s + ⋯
L(s)  = 1  + 1.56·3-s + 0.299·5-s − 1.47·7-s + 1.45·9-s + 0.833·11-s − 0.139·13-s + 0.469·15-s + 0.0845·17-s − 1.29·19-s − 2.31·21-s + 0.208·23-s − 0.910·25-s + 0.719·27-s − 1.74·29-s − 0.0734·31-s + 1.30·33-s − 0.442·35-s − 1.52·37-s − 0.219·39-s − 0.307·41-s − 0.0858·43-s + 0.437·45-s − 0.873·47-s + 1.18·49-s + 0.132·51-s + 1.67·53-s + 0.249·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 8.14T + 27T^{2} \)
5 \( 1 - 3.35T + 125T^{2} \)
7 \( 1 + 27.3T + 343T^{2} \)
11 \( 1 - 30.4T + 1.33e3T^{2} \)
13 \( 1 + 6.55T + 2.19e3T^{2} \)
17 \( 1 - 5.92T + 4.91e3T^{2} \)
19 \( 1 + 107.T + 6.85e3T^{2} \)
29 \( 1 + 272.T + 2.43e4T^{2} \)
31 \( 1 + 12.6T + 2.97e4T^{2} \)
37 \( 1 + 343.T + 5.06e4T^{2} \)
41 \( 1 + 80.6T + 6.89e4T^{2} \)
43 \( 1 + 24.2T + 7.95e4T^{2} \)
47 \( 1 + 281.T + 1.03e5T^{2} \)
53 \( 1 - 647.T + 1.48e5T^{2} \)
59 \( 1 + 263.T + 2.05e5T^{2} \)
61 \( 1 - 211.T + 2.26e5T^{2} \)
67 \( 1 - 923.T + 3.00e5T^{2} \)
71 \( 1 - 645.T + 3.57e5T^{2} \)
73 \( 1 - 615.T + 3.89e5T^{2} \)
79 \( 1 + 13.5T + 4.93e5T^{2} \)
83 \( 1 + 1.24e3T + 5.71e5T^{2} \)
89 \( 1 - 359.T + 7.04e5T^{2} \)
97 \( 1 + 608.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.841375685291259636707657792735, −8.136920021581832172891921438901, −7.06405899561345795341215467103, −6.56182312725476285775133038063, −5.49944846392801787716483752271, −3.89660751907019747589548767170, −3.64265487473079049272223335818, −2.54043078814706097150349040632, −1.73914185863053115155712863254, 0, 1.73914185863053115155712863254, 2.54043078814706097150349040632, 3.64265487473079049272223335818, 3.89660751907019747589548767170, 5.49944846392801787716483752271, 6.56182312725476285775133038063, 7.06405899561345795341215467103, 8.136920021581832172891921438901, 8.841375685291259636707657792735

Graph of the $Z$-function along the critical line