L(s) = 1 | + (−0.608 + 0.793i)2-s + (1.85 − 0.369i)3-s + (−0.258 − 0.965i)4-s + (−0.837 + 1.69i)6-s + (0.923 + 0.382i)8-s + (2.38 − 0.989i)9-s + (−0.837 − 1.69i)12-s + (−0.835 + 1.25i)13-s + (−0.866 + 0.499i)16-s + (−0.669 + 2.49i)18-s + (0.382 + 0.923i)23-s + (1.85 + 0.369i)24-s + (−0.382 + 0.923i)25-s + (−0.483 − 1.42i)26-s + (2.49 − 1.66i)27-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)2-s + (1.85 − 0.369i)3-s + (−0.258 − 0.965i)4-s + (−0.837 + 1.69i)6-s + (0.923 + 0.382i)8-s + (2.38 − 0.989i)9-s + (−0.837 − 1.69i)12-s + (−0.835 + 1.25i)13-s + (−0.866 + 0.499i)16-s + (−0.669 + 2.49i)18-s + (0.382 + 0.923i)23-s + (1.85 + 0.369i)24-s + (−0.382 + 0.923i)25-s + (−0.483 − 1.42i)26-s + (2.49 − 1.66i)27-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.881−0.471i)Λ(1−s)
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.881−0.471i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
0.881−0.471i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(1333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :0), 0.881−0.471i)
|
Particular Values
L(21) |
≈ |
1.470643910 |
L(21) |
≈ |
1.470643910 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.608−0.793i)T |
| 23 | 1+(−0.382−0.923i)T |
good | 3 | 1+(−1.85+0.369i)T+(0.923−0.382i)T2 |
| 5 | 1+(0.382−0.923i)T2 |
| 7 | 1+(−0.707−0.707i)T2 |
| 11 | 1+(0.923+0.382i)T2 |
| 13 | 1+(0.835−1.25i)T+(−0.382−0.923i)T2 |
| 17 | 1+iT2 |
| 19 | 1+(−0.382−0.923i)T2 |
| 29 | 1+(0.349+1.75i)T+(−0.923+0.382i)T2 |
| 31 | 1+1.21iT−T2 |
| 37 | 1+(−0.382+0.923i)T2 |
| 41 | 1+(0.382+0.923i)T+(−0.707+0.707i)T2 |
| 43 | 1+(−0.923−0.382i)T2 |
| 47 | 1+(0.366−0.366i)T−iT2 |
| 53 | 1+(0.923+0.382i)T2 |
| 59 | 1+(1.08+1.63i)T+(−0.382+0.923i)T2 |
| 61 | 1+(−0.923+0.382i)T2 |
| 67 | 1+(−0.923+0.382i)T2 |
| 71 | 1+(0.241+0.0999i)T+(0.707+0.707i)T2 |
| 73 | 1+(1.78−0.739i)T+(0.707−0.707i)T2 |
| 79 | 1−iT2 |
| 83 | 1+(−0.382−0.923i)T2 |
| 89 | 1+(0.707+0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.546773395626280512113391449201, −8.973522351024259502556943889813, −8.069587177754238668904114290984, −7.48744838397511229860707234320, −7.00511632044461169667171000646, −5.94693816373854407261830375242, −4.59483017604875724778030544075, −3.78915855650649696397254590741, −2.41548845763799947660124788246, −1.63597067266958237522364988625,
1.58692141040650096984411319709, 2.78908988993675154597253490537, 3.10384323064120358332690988212, 4.21329855143058927615634598832, 5.03694543484856123926247836760, 6.95209497977235106579876180787, 7.58780029028992043375632052718, 8.387806354186008501290613260238, 8.780388821236255327996603249342, 9.581395611964288569097073096171