L(s) = 1 | + (−0.608 + 0.793i)2-s + (1.85 − 0.369i)3-s + (−0.258 − 0.965i)4-s + (−0.837 + 1.69i)6-s + (0.923 + 0.382i)8-s + (2.38 − 0.989i)9-s + (−0.837 − 1.69i)12-s + (−0.835 + 1.25i)13-s + (−0.866 + 0.499i)16-s + (−0.669 + 2.49i)18-s + (0.382 + 0.923i)23-s + (1.85 + 0.369i)24-s + (−0.382 + 0.923i)25-s + (−0.483 − 1.42i)26-s + (2.49 − 1.66i)27-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)2-s + (1.85 − 0.369i)3-s + (−0.258 − 0.965i)4-s + (−0.837 + 1.69i)6-s + (0.923 + 0.382i)8-s + (2.38 − 0.989i)9-s + (−0.837 − 1.69i)12-s + (−0.835 + 1.25i)13-s + (−0.866 + 0.499i)16-s + (−0.669 + 2.49i)18-s + (0.382 + 0.923i)23-s + (1.85 + 0.369i)24-s + (−0.382 + 0.923i)25-s + (−0.483 − 1.42i)26-s + (2.49 − 1.66i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.470643910\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.470643910\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.608 - 0.793i)T \) |
| 23 | \( 1 + (-0.382 - 0.923i)T \) |
good | 3 | \( 1 + (-1.85 + 0.369i)T + (0.923 - 0.382i)T^{2} \) |
| 5 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 7 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 13 | \( 1 + (0.835 - 1.25i)T + (-0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 29 | \( 1 + (0.349 + 1.75i)T + (-0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + 1.21iT - T^{2} \) |
| 37 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.923i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 47 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 53 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 59 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 61 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 67 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 71 | \( 1 + (0.241 + 0.0999i)T + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (1.78 - 0.739i)T + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 89 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.546773395626280512113391449201, −8.973522351024259502556943889813, −8.069587177754238668904114290984, −7.48744838397511229860707234320, −7.00511632044461169667171000646, −5.94693816373854407261830375242, −4.59483017604875724778030544075, −3.78915855650649696397254590741, −2.41548845763799947660124788246, −1.63597067266958237522364988625,
1.58692141040650096984411319709, 2.78908988993675154597253490537, 3.10384323064120358332690988212, 4.21329855143058927615634598832, 5.03694543484856123926247836760, 6.95209497977235106579876180787, 7.58780029028992043375632052718, 8.387806354186008501290613260238, 8.780388821236255327996603249342, 9.581395611964288569097073096171