L(s) = 1 | + (−0.130 + 0.991i)2-s + (−1.65 − 1.10i)3-s + (−0.965 − 0.258i)4-s + (1.31 − 1.50i)6-s + (0.382 − 0.923i)8-s + (1.14 + 2.75i)9-s + (1.31 + 1.50i)12-s + (−0.867 + 0.172i)13-s + (0.866 + 0.5i)16-s + (−2.88 + 0.772i)18-s + (−0.923 + 0.382i)23-s + (−1.65 + 1.10i)24-s + (0.923 + 0.382i)25-s + (−0.0578 − 0.882i)26-s + (0.772 − 3.88i)27-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (−1.65 − 1.10i)3-s + (−0.965 − 0.258i)4-s + (1.31 − 1.50i)6-s + (0.382 − 0.923i)8-s + (1.14 + 2.75i)9-s + (1.31 + 1.50i)12-s + (−0.867 + 0.172i)13-s + (0.866 + 0.5i)16-s + (−2.88 + 0.772i)18-s + (−0.923 + 0.382i)23-s + (−1.65 + 1.10i)24-s + (0.923 + 0.382i)25-s + (−0.0578 − 0.882i)26-s + (0.772 − 3.88i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4543829212\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4543829212\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.130 - 0.991i)T \) |
| 23 | \( 1 + (0.923 - 0.382i)T \) |
good | 3 | \( 1 + (1.65 + 1.10i)T + (0.382 + 0.923i)T^{2} \) |
| 5 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (0.867 - 0.172i)T + (0.923 - 0.382i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.835 + 1.25i)T + (-0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + 0.261iT - T^{2} \) |
| 37 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (-0.923 + 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 53 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 59 | \( 1 + (-1.63 - 0.324i)T + (0.923 + 0.382i)T^{2} \) |
| 61 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 71 | \( 1 + (-0.465 + 1.12i)T + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.198 + 0.478i)T + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.811772040876310979630652854476, −8.521398670136778805968654425278, −7.65950847409518756285824197742, −7.15075675632878625126705799754, −6.42713481063632636894959209169, −5.73138629060358143600060927331, −5.05782910978178391219082631047, −4.23820124001746296333588215319, −2.10730566676595812993243881948, −0.65235050718403857882520871094,
0.978783891593516166102316244008, 2.81704852263782768181217729860, 3.97380501435881725004539130005, 4.66669424761420122470079992938, 5.28147314242715698096527814604, 6.19246428182255158183765557650, 7.18559625719388141021227405883, 8.505959209877949006634363072365, 9.416305322388503758347332641281, 9.951497916503560686363752477532