L(s) = 1 | + (−0.130 + 0.991i)2-s + (−1.65 − 1.10i)3-s + (−0.965 − 0.258i)4-s + (1.31 − 1.50i)6-s + (0.382 − 0.923i)8-s + (1.14 + 2.75i)9-s + (1.31 + 1.50i)12-s + (−0.867 + 0.172i)13-s + (0.866 + 0.5i)16-s + (−2.88 + 0.772i)18-s + (−0.923 + 0.382i)23-s + (−1.65 + 1.10i)24-s + (0.923 + 0.382i)25-s + (−0.0578 − 0.882i)26-s + (0.772 − 3.88i)27-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (−1.65 − 1.10i)3-s + (−0.965 − 0.258i)4-s + (1.31 − 1.50i)6-s + (0.382 − 0.923i)8-s + (1.14 + 2.75i)9-s + (1.31 + 1.50i)12-s + (−0.867 + 0.172i)13-s + (0.866 + 0.5i)16-s + (−2.88 + 0.772i)18-s + (−0.923 + 0.382i)23-s + (−1.65 + 1.10i)24-s + (0.923 + 0.382i)25-s + (−0.0578 − 0.882i)26-s + (0.772 − 3.88i)27-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.956+0.290i)Λ(1−s)
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.956+0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
0.956+0.290i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(965,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :0), 0.956+0.290i)
|
Particular Values
L(21) |
≈ |
0.4543829212 |
L(21) |
≈ |
0.4543829212 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.130−0.991i)T |
| 23 | 1+(0.923−0.382i)T |
good | 3 | 1+(1.65+1.10i)T+(0.382+0.923i)T2 |
| 5 | 1+(−0.923−0.382i)T2 |
| 7 | 1+(0.707+0.707i)T2 |
| 11 | 1+(0.382−0.923i)T2 |
| 13 | 1+(0.867−0.172i)T+(0.923−0.382i)T2 |
| 17 | 1+iT2 |
| 19 | 1+(0.923−0.382i)T2 |
| 29 | 1+(−0.835+1.25i)T+(−0.382−0.923i)T2 |
| 31 | 1+0.261iT−T2 |
| 37 | 1+(0.923+0.382i)T2 |
| 41 | 1+(−0.923+0.382i)T+(0.707−0.707i)T2 |
| 43 | 1+(−0.382+0.923i)T2 |
| 47 | 1+(−1.36+1.36i)T−iT2 |
| 53 | 1+(0.382−0.923i)T2 |
| 59 | 1+(−1.63−0.324i)T+(0.923+0.382i)T2 |
| 61 | 1+(−0.382−0.923i)T2 |
| 67 | 1+(−0.382−0.923i)T2 |
| 71 | 1+(−0.465+1.12i)T+(−0.707−0.707i)T2 |
| 73 | 1+(0.198+0.478i)T+(−0.707+0.707i)T2 |
| 79 | 1−iT2 |
| 83 | 1+(0.923−0.382i)T2 |
| 89 | 1+(−0.707−0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.811772040876310979630652854476, −8.521398670136778805968654425278, −7.65950847409518756285824197742, −7.15075675632878625126705799754, −6.42713481063632636894959209169, −5.73138629060358143600060927331, −5.05782910978178391219082631047, −4.23820124001746296333588215319, −2.10730566676595812993243881948, −0.65235050718403857882520871094,
0.978783891593516166102316244008, 2.81704852263782768181217729860, 3.97380501435881725004539130005, 4.66669424761420122470079992938, 5.28147314242715698096527814604, 6.19246428182255158183765557650, 7.18559625719388141021227405883, 8.505959209877949006634363072365, 9.416305322388503758347332641281, 9.951497916503560686363752477532