L(s) = 1 | + (1.36 + 1.36i)3-s + 2.73i·9-s + (−0.366 − 0.366i)13-s − i·23-s − i·25-s + (−2.36 + 2.36i)27-s + (1.36 + 1.36i)29-s − 1.73·31-s − i·39-s − i·41-s + 47-s − 49-s + (1 − i)59-s + (1.36 − 1.36i)69-s − 1.73i·71-s + ⋯ |
L(s) = 1 | + (1.36 + 1.36i)3-s + 2.73i·9-s + (−0.366 − 0.366i)13-s − i·23-s − i·25-s + (−2.36 + 2.36i)27-s + (1.36 + 1.36i)29-s − 1.73·31-s − i·39-s − i·41-s + 47-s − 49-s + (1 − i)59-s + (1.36 − 1.36i)69-s − 1.73i·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.658257056\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.658257056\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 29 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 31 | \( 1 + 1.73T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-1 + i)T - iT^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + 1.73iT - T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.825381591052167058075017732320, −9.028987984145465172044491161454, −8.508089998849182011810588266819, −7.79084639925570971761793109776, −6.81040914004167357056579837348, −5.39929587373681317054063679733, −4.70171025933114825966281854797, −3.85154042028488456270290057594, −3.00622692088938132002009658678, −2.14950372428015083013317138813,
1.33310930487965156410094574986, 2.30341736868639320295973446477, 3.20350184328983946501665285744, 4.12724559313902438202457951295, 5.59911715850064338962734609561, 6.56373733740205735566123441484, 7.29049630465938043438290388362, 7.81652026419501100265551175732, 8.631457448103184264052196679000, 9.314748864651358753968177033386