L(s) = 1 | + (1.36 + 1.36i)3-s + 2.73i·9-s + (−0.366 − 0.366i)13-s − i·23-s − i·25-s + (−2.36 + 2.36i)27-s + (1.36 + 1.36i)29-s − 1.73·31-s − i·39-s − i·41-s + 47-s − 49-s + (1 − i)59-s + (1.36 − 1.36i)69-s − 1.73i·71-s + ⋯ |
L(s) = 1 | + (1.36 + 1.36i)3-s + 2.73i·9-s + (−0.366 − 0.366i)13-s − i·23-s − i·25-s + (−2.36 + 2.36i)27-s + (1.36 + 1.36i)29-s − 1.73·31-s − i·39-s − i·41-s + 47-s − 49-s + (1 − i)59-s + (1.36 − 1.36i)69-s − 1.73i·71-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.130−0.991i)Λ(1−s)
Λ(s)=(=(1472s/2ΓC(s)L(s)(0.130−0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
0.130−0.991i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(1425,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :0), 0.130−0.991i)
|
Particular Values
L(21) |
≈ |
1.658257056 |
L(21) |
≈ |
1.658257056 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+iT |
good | 3 | 1+(−1.36−1.36i)T+iT2 |
| 5 | 1+iT2 |
| 7 | 1+T2 |
| 11 | 1+iT2 |
| 13 | 1+(0.366+0.366i)T+iT2 |
| 17 | 1−T2 |
| 19 | 1−iT2 |
| 29 | 1+(−1.36−1.36i)T+iT2 |
| 31 | 1+1.73T+T2 |
| 37 | 1+iT2 |
| 41 | 1+iT−T2 |
| 43 | 1+iT2 |
| 47 | 1−T+T2 |
| 53 | 1+iT2 |
| 59 | 1+(−1+i)T−iT2 |
| 61 | 1−iT2 |
| 67 | 1−iT2 |
| 71 | 1+1.73iT−T2 |
| 73 | 1−iT−T2 |
| 79 | 1−T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.825381591052167058075017732320, −9.028987984145465172044491161454, −8.508089998849182011810588266819, −7.79084639925570971761793109776, −6.81040914004167357056579837348, −5.39929587373681317054063679733, −4.70171025933114825966281854797, −3.85154042028488456270290057594, −3.00622692088938132002009658678, −2.14950372428015083013317138813,
1.33310930487965156410094574986, 2.30341736868639320295973446477, 3.20350184328983946501665285744, 4.12724559313902438202457951295, 5.59911715850064338962734609561, 6.56373733740205735566123441484, 7.29049630465938043438290388362, 7.81652026419501100265551175732, 8.631457448103184264052196679000, 9.314748864651358753968177033386