L(s) = 1 | + (−1 − i)3-s + i·9-s + (−1 − i)13-s − i·23-s − i·25-s + (−1 − i)29-s + 2i·39-s + 2i·41-s − 2·47-s − 49-s + (1 − i)59-s + (−1 + i)69-s − 2i·73-s + (−1 + i)75-s + 81-s + ⋯ |
L(s) = 1 | + (−1 − i)3-s + i·9-s + (−1 − i)13-s − i·23-s − i·25-s + (−1 − i)29-s + 2i·39-s + 2i·41-s − 2·47-s − 49-s + (1 − i)59-s + (−1 + i)69-s − 2i·73-s + (−1 + i)75-s + 81-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(−0.923+0.382i)Λ(1−s)
Λ(s)=(=(1472s/2ΓC(s)L(s)(−0.923+0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
−0.923+0.382i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(1425,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :0), −0.923+0.382i)
|
Particular Values
L(21) |
≈ |
0.4781549006 |
L(21) |
≈ |
0.4781549006 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+iT |
good | 3 | 1+(1+i)T+iT2 |
| 5 | 1+iT2 |
| 7 | 1+T2 |
| 11 | 1+iT2 |
| 13 | 1+(1+i)T+iT2 |
| 17 | 1−T2 |
| 19 | 1−iT2 |
| 29 | 1+(1+i)T+iT2 |
| 31 | 1+T2 |
| 37 | 1+iT2 |
| 41 | 1−2iT−T2 |
| 43 | 1+iT2 |
| 47 | 1+2T+T2 |
| 53 | 1+iT2 |
| 59 | 1+(−1+i)T−iT2 |
| 61 | 1−iT2 |
| 67 | 1−iT2 |
| 71 | 1−T2 |
| 73 | 1+2iT−T2 |
| 79 | 1−T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.540864728123536893037153029622, −8.146934818605474248307196468854, −7.79131131330721310153342056583, −6.71659709475276646863850361219, −6.24395529802743671147969119772, −5.31232219173448931934722221886, −4.54731029416957891172573435628, −3.05080532227281323577501297150, −1.90870223265964331687850674993, −0.42333670295963037680140036137,
1.84990701873601891355084067052, 3.41319010040791130690878703668, 4.27555675899622033603690998351, 5.17504049756295581018714727881, 5.61806620553868395572879005222, 6.82033105735933499790066607771, 7.41861745556457510078669580158, 8.691518392501832098574446649930, 9.572983584122506562908521870706, 9.891766602840267351340748700194