L(s) = 1 | + (−1 − i)3-s + i·9-s + (−1 − i)13-s − i·23-s − i·25-s + (−1 − i)29-s + 2i·39-s + 2i·41-s − 2·47-s − 49-s + (1 − i)59-s + (−1 + i)69-s − 2i·73-s + (−1 + i)75-s + 81-s + ⋯ |
L(s) = 1 | + (−1 − i)3-s + i·9-s + (−1 − i)13-s − i·23-s − i·25-s + (−1 − i)29-s + 2i·39-s + 2i·41-s − 2·47-s − 49-s + (1 − i)59-s + (−1 + i)69-s − 2i·73-s + (−1 + i)75-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4781549006\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4781549006\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (1 + i)T + iT^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 29 | \( 1 + (1 + i)T + iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - 2iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + 2T + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-1 + i)T - iT^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 2iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.540864728123536893037153029622, −8.146934818605474248307196468854, −7.79131131330721310153342056583, −6.71659709475276646863850361219, −6.24395529802743671147969119772, −5.31232219173448931934722221886, −4.54731029416957891172573435628, −3.05080532227281323577501297150, −1.90870223265964331687850674993, −0.42333670295963037680140036137,
1.84990701873601891355084067052, 3.41319010040791130690878703668, 4.27555675899622033603690998351, 5.17504049756295581018714727881, 5.61806620553868395572879005222, 6.82033105735933499790066607771, 7.41861745556457510078669580158, 8.691518392501832098574446649930, 9.572983584122506562908521870706, 9.891766602840267351340748700194