L(s) = 1 | + (−0.933 + 1.06i)2-s + (−1.89 − 1.29i)3-s + (−0.258 − 1.98i)4-s + (0.459 + 0.0344i)5-s + (3.14 − 0.809i)6-s + (0.101 + 2.64i)7-s + (2.34 + 1.57i)8-s + (0.830 + 2.11i)9-s + (−0.464 + 0.455i)10-s + (−5.59 − 2.19i)11-s + (−2.07 + 4.09i)12-s + (−4.33 + 3.45i)13-s + (−2.90 − 2.35i)14-s + (−0.826 − 0.659i)15-s + (−3.86 + 1.02i)16-s + (2.11 + 2.27i)17-s + ⋯ |
L(s) = 1 | + (−0.659 + 0.751i)2-s + (−1.09 − 0.746i)3-s + (−0.129 − 0.991i)4-s + (0.205 + 0.0153i)5-s + (1.28 − 0.330i)6-s + (0.0385 + 0.999i)7-s + (0.830 + 0.557i)8-s + (0.276 + 0.705i)9-s + (−0.147 + 0.144i)10-s + (−1.68 − 0.661i)11-s + (−0.599 + 1.18i)12-s + (−1.20 + 0.958i)13-s + (−0.776 − 0.630i)14-s + (−0.213 − 0.170i)15-s + (−0.966 + 0.256i)16-s + (0.512 + 0.552i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.965−0.260i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.965−0.260i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.965−0.260i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.965−0.260i)
|
Particular Values
L(1) |
≈ |
0.0216920+0.163743i |
L(21) |
≈ |
0.0216920+0.163743i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.933−1.06i)T |
| 7 | 1+(−0.101−2.64i)T |
good | 3 | 1+(1.89+1.29i)T+(1.09+2.79i)T2 |
| 5 | 1+(−0.459−0.0344i)T+(4.94+0.745i)T2 |
| 11 | 1+(5.59+2.19i)T+(8.06+7.48i)T2 |
| 13 | 1+(4.33−3.45i)T+(2.89−12.6i)T2 |
| 17 | 1+(−2.11−2.27i)T+(−1.27+16.9i)T2 |
| 19 | 1+(3.06−5.30i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.35+3.61i)T+(−1.71−22.9i)T2 |
| 29 | 1+(−0.395−1.73i)T+(−26.1+12.5i)T2 |
| 31 | 1+(−1.92−3.33i)T+(−15.5+26.8i)T2 |
| 37 | 1+(2.78+0.859i)T+(30.5+20.8i)T2 |
| 41 | 1+(4.16+8.64i)T+(−25.5+32.0i)T2 |
| 43 | 1+(−0.134+0.278i)T+(−26.8−33.6i)T2 |
| 47 | 1+(−3.46+0.522i)T+(44.9−13.8i)T2 |
| 53 | 1+(0.191−0.0589i)T+(43.7−29.8i)T2 |
| 59 | 1+(−0.0565−0.755i)T+(−58.3+8.79i)T2 |
| 61 | 1+(−0.954+3.09i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−10.0+5.77i)T+(33.5−58.0i)T2 |
| 71 | 1+(10.3+2.35i)T+(63.9+30.8i)T2 |
| 73 | 1+(0.0295−0.196i)T+(−69.7−21.5i)T2 |
| 79 | 1+(−3.05−1.76i)T+(39.5+68.4i)T2 |
| 83 | 1+(3.10−3.88i)T+(−18.4−80.9i)T2 |
| 89 | 1+(8.95−3.51i)T+(65.2−60.5i)T2 |
| 97 | 1−4.04iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70082929059331725332319971131, −12.05595341153723172398013869990, −10.85661414227293525828335192852, −10.07579559238989790725666320003, −8.736820317896575522408671219192, −7.80611111034398586615495178935, −6.69030381486494357845233978084, −5.74954021809643956768618248515, −5.13377326186017441879429968550, −2.08510148599544413819026188288,
0.19074014110650379077927741108, 2.74172650411681973127063406528, 4.52422932915530641073299258042, 5.27110433439120008627861240285, 7.18373947335078378893266318239, 7.938859949046600845412921104320, 9.784428706987074059578622912570, 10.09072098390664682831260243978, 10.88499486491594896625663638945, 11.69618368042946166938604390280