Properties

Label 2-14e2-196.103-c1-0-1
Degree $2$
Conductor $196$
Sign $-0.965 - 0.260i$
Analytic cond. $1.56506$
Root an. cond. $1.25102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.933 + 1.06i)2-s + (−1.89 − 1.29i)3-s + (−0.258 − 1.98i)4-s + (0.459 + 0.0344i)5-s + (3.14 − 0.809i)6-s + (0.101 + 2.64i)7-s + (2.34 + 1.57i)8-s + (0.830 + 2.11i)9-s + (−0.464 + 0.455i)10-s + (−5.59 − 2.19i)11-s + (−2.07 + 4.09i)12-s + (−4.33 + 3.45i)13-s + (−2.90 − 2.35i)14-s + (−0.826 − 0.659i)15-s + (−3.86 + 1.02i)16-s + (2.11 + 2.27i)17-s + ⋯
L(s)  = 1  + (−0.659 + 0.751i)2-s + (−1.09 − 0.746i)3-s + (−0.129 − 0.991i)4-s + (0.205 + 0.0153i)5-s + (1.28 − 0.330i)6-s + (0.0385 + 0.999i)7-s + (0.830 + 0.557i)8-s + (0.276 + 0.705i)9-s + (−0.147 + 0.144i)10-s + (−1.68 − 0.661i)11-s + (−0.599 + 1.18i)12-s + (−1.20 + 0.958i)13-s + (−0.776 − 0.630i)14-s + (−0.213 − 0.170i)15-s + (−0.966 + 0.256i)16-s + (0.512 + 0.552i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.260i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 - 0.260i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-0.965 - 0.260i$
Analytic conductor: \(1.56506\)
Root analytic conductor: \(1.25102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{196} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ -0.965 - 0.260i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0216920 + 0.163743i\)
\(L(\frac12)\) \(\approx\) \(0.0216920 + 0.163743i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.933 - 1.06i)T \)
7 \( 1 + (-0.101 - 2.64i)T \)
good3 \( 1 + (1.89 + 1.29i)T + (1.09 + 2.79i)T^{2} \)
5 \( 1 + (-0.459 - 0.0344i)T + (4.94 + 0.745i)T^{2} \)
11 \( 1 + (5.59 + 2.19i)T + (8.06 + 7.48i)T^{2} \)
13 \( 1 + (4.33 - 3.45i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (-2.11 - 2.27i)T + (-1.27 + 16.9i)T^{2} \)
19 \( 1 + (3.06 - 5.30i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.35 + 3.61i)T + (-1.71 - 22.9i)T^{2} \)
29 \( 1 + (-0.395 - 1.73i)T + (-26.1 + 12.5i)T^{2} \)
31 \( 1 + (-1.92 - 3.33i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (2.78 + 0.859i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (4.16 + 8.64i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (-0.134 + 0.278i)T + (-26.8 - 33.6i)T^{2} \)
47 \( 1 + (-3.46 + 0.522i)T + (44.9 - 13.8i)T^{2} \)
53 \( 1 + (0.191 - 0.0589i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (-0.0565 - 0.755i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (-0.954 + 3.09i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (-10.0 + 5.77i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (10.3 + 2.35i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (0.0295 - 0.196i)T + (-69.7 - 21.5i)T^{2} \)
79 \( 1 + (-3.05 - 1.76i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.10 - 3.88i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (8.95 - 3.51i)T + (65.2 - 60.5i)T^{2} \)
97 \( 1 - 4.04iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.70082929059331725332319971131, −12.05595341153723172398013869990, −10.85661414227293525828335192852, −10.07579559238989790725666320003, −8.736820317896575522408671219192, −7.80611111034398586615495178935, −6.69030381486494357845233978084, −5.74954021809643956768618248515, −5.13377326186017441879429968550, −2.08510148599544413819026188288, 0.19074014110650379077927741108, 2.74172650411681973127063406528, 4.52422932915530641073299258042, 5.27110433439120008627861240285, 7.18373947335078378893266318239, 7.938859949046600845412921104320, 9.784428706987074059578622912570, 10.09072098390664682831260243978, 10.88499486491594896625663638945, 11.69618368042946166938604390280

Graph of the $Z$-function along the critical line