L(s) = 1 | + (0.852 − 1.12i)2-s + (−0.330 − 0.225i)3-s + (−0.547 − 1.92i)4-s + (−0.194 − 0.0145i)5-s + (−0.535 + 0.180i)6-s + (−1.62 − 2.09i)7-s + (−2.63 − 1.02i)8-s + (−1.03 − 2.64i)9-s + (−0.181 + 0.206i)10-s + (4.10 + 1.60i)11-s + (−0.252 + 0.758i)12-s + (2.89 − 2.31i)13-s + (−3.74 + 0.0466i)14-s + (0.0608 + 0.0485i)15-s + (−3.39 + 2.10i)16-s + (4.17 + 4.50i)17-s + ⋯ |
L(s) = 1 | + (0.602 − 0.798i)2-s + (−0.190 − 0.130i)3-s + (−0.273 − 0.961i)4-s + (−0.0868 − 0.00650i)5-s + (−0.218 + 0.0738i)6-s + (−0.612 − 0.790i)7-s + (−0.932 − 0.360i)8-s + (−0.345 − 0.881i)9-s + (−0.0575 + 0.0653i)10-s + (1.23 + 0.485i)11-s + (−0.0727 + 0.219i)12-s + (0.804 − 0.641i)13-s + (−0.999 + 0.0124i)14-s + (0.0157 + 0.0125i)15-s + (−0.849 + 0.526i)16-s + (1.01 + 1.09i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.430+0.902i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.430+0.902i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.430+0.902i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.430+0.902i)
|
Particular Values
L(1) |
≈ |
0.730655−1.15822i |
L(21) |
≈ |
0.730655−1.15822i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.852+1.12i)T |
| 7 | 1+(1.62+2.09i)T |
good | 3 | 1+(0.330+0.225i)T+(1.09+2.79i)T2 |
| 5 | 1+(0.194+0.0145i)T+(4.94+0.745i)T2 |
| 11 | 1+(−4.10−1.60i)T+(8.06+7.48i)T2 |
| 13 | 1+(−2.89+2.31i)T+(2.89−12.6i)T2 |
| 17 | 1+(−4.17−4.50i)T+(−1.27+16.9i)T2 |
| 19 | 1+(2.69−4.66i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.58+2.79i)T+(−1.71−22.9i)T2 |
| 29 | 1+(1.16+5.11i)T+(−26.1+12.5i)T2 |
| 31 | 1+(−4.63−8.03i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−10.0−3.09i)T+(30.5+20.8i)T2 |
| 41 | 1+(1.28+2.66i)T+(−25.5+32.0i)T2 |
| 43 | 1+(−0.871+1.81i)T+(−26.8−33.6i)T2 |
| 47 | 1+(−0.800+0.120i)T+(44.9−13.8i)T2 |
| 53 | 1+(5.82−1.79i)T+(43.7−29.8i)T2 |
| 59 | 1+(0.925+12.3i)T+(−58.3+8.79i)T2 |
| 61 | 1+(−2.27+7.37i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−1.40+0.808i)T+(33.5−58.0i)T2 |
| 71 | 1+(4.57+1.04i)T+(63.9+30.8i)T2 |
| 73 | 1+(2.28−15.1i)T+(−69.7−21.5i)T2 |
| 79 | 1+(2.58+1.49i)T+(39.5+68.4i)T2 |
| 83 | 1+(0.292−0.366i)T+(−18.4−80.9i)T2 |
| 89 | 1+(10.1−3.99i)T+(65.2−60.5i)T2 |
| 97 | 1−4.71iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.35151997198541639526093115626, −11.35739981024985496122271107854, −10.28899391599519325358415659328, −9.611175415252447571461743411089, −8.289403903156489036760589665777, −6.52167946866640287989799073810, −5.98479336535887875882400897261, −4.11574656073446555889938222223, −3.43273824148722965156112539099, −1.18957755622566829878345638954,
2.90583638771697462693997494596, 4.28653408680468697590565525792, 5.60920202206980605029643631210, 6.36615866425303966821139653577, 7.57816484499857025304990620835, 8.808243396499466495328308242265, 9.465662537645349459272174442348, 11.41953092538784297820965247552, 11.69020072207595928552992320390, 13.09598554744989082201461879252