L(s) = 1 | + (−1.37 + 0.340i)2-s + (2.65 + 1.81i)3-s + (1.76 − 0.934i)4-s + (−3.39 − 0.254i)5-s + (−4.26 − 1.58i)6-s + (0.227 + 2.63i)7-s + (−2.10 + 1.88i)8-s + (2.68 + 6.83i)9-s + (4.74 − 0.806i)10-s + (−0.627 − 0.246i)11-s + (6.39 + 0.719i)12-s + (0.189 − 0.151i)13-s + (−1.20 − 3.54i)14-s + (−8.56 − 6.82i)15-s + (2.25 − 3.30i)16-s + (2.64 + 2.84i)17-s + ⋯ |
L(s) = 1 | + (−0.970 + 0.240i)2-s + (1.53 + 1.04i)3-s + (0.884 − 0.467i)4-s + (−1.51 − 0.113i)5-s + (−1.74 − 0.645i)6-s + (0.0858 + 0.996i)7-s + (−0.745 + 0.666i)8-s + (0.894 + 2.27i)9-s + (1.50 − 0.255i)10-s + (−0.189 − 0.0742i)11-s + (1.84 + 0.207i)12-s + (0.0525 − 0.0419i)13-s + (−0.323 − 0.946i)14-s + (−2.21 − 1.76i)15-s + (0.563 − 0.826i)16-s + (0.641 + 0.691i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.186−0.982i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.186−0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.186−0.982i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.186−0.982i)
|
Particular Values
L(1) |
≈ |
0.641027+0.774475i |
L(21) |
≈ |
0.641027+0.774475i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.37−0.340i)T |
| 7 | 1+(−0.227−2.63i)T |
good | 3 | 1+(−2.65−1.81i)T+(1.09+2.79i)T2 |
| 5 | 1+(3.39+0.254i)T+(4.94+0.745i)T2 |
| 11 | 1+(0.627+0.246i)T+(8.06+7.48i)T2 |
| 13 | 1+(−0.189+0.151i)T+(2.89−12.6i)T2 |
| 17 | 1+(−2.64−2.84i)T+(−1.27+16.9i)T2 |
| 19 | 1+(−1.77+3.07i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.03+3.27i)T+(−1.71−22.9i)T2 |
| 29 | 1+(0.473+2.07i)T+(−26.1+12.5i)T2 |
| 31 | 1+(−0.307−0.532i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.57+0.485i)T+(30.5+20.8i)T2 |
| 41 | 1+(1.74+3.61i)T+(−25.5+32.0i)T2 |
| 43 | 1+(−2.65+5.50i)T+(−26.8−33.6i)T2 |
| 47 | 1+(−0.966+0.145i)T+(44.9−13.8i)T2 |
| 53 | 1+(−8.02+2.47i)T+(43.7−29.8i)T2 |
| 59 | 1+(0.668+8.92i)T+(−58.3+8.79i)T2 |
| 61 | 1+(1.03−3.34i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−10.4+6.03i)T+(33.5−58.0i)T2 |
| 71 | 1+(−9.25−2.11i)T+(63.9+30.8i)T2 |
| 73 | 1+(2.30−15.3i)T+(−69.7−21.5i)T2 |
| 79 | 1+(8.66+5.00i)T+(39.5+68.4i)T2 |
| 83 | 1+(2.81−3.53i)T+(−18.4−80.9i)T2 |
| 89 | 1+(2.77−1.08i)T+(65.2−60.5i)T2 |
| 97 | 1−0.505iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.61531666973513792167073376473, −11.49083263486802013568825843948, −10.56536172163568744169804851446, −9.502129699672768707789404043699, −8.565433014983015847210336391562, −8.251012712643700087015518043670, −7.22690788204821036857675180447, −5.16823456062782357440200005853, −3.70750714701103823229869750166, −2.57270604777212526574243901118,
1.13445068121144291336095562312, 3.02339769872739815050535782468, 3.82445548822777585756374273292, 6.88029657804592882718544761341, 7.59310774088054569961109292534, 7.911138547107778871034182968104, 8.960547150788764000199121497980, 10.04029695948633799637872329337, 11.35670717936622720270022608472, 12.16112850918461978176616659966