Properties

Label 2-14e2-196.103-c1-0-3
Degree $2$
Conductor $196$
Sign $-0.186 - 0.982i$
Analytic cond. $1.56506$
Root an. cond. $1.25102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.37 + 0.340i)2-s + (2.65 + 1.81i)3-s + (1.76 − 0.934i)4-s + (−3.39 − 0.254i)5-s + (−4.26 − 1.58i)6-s + (0.227 + 2.63i)7-s + (−2.10 + 1.88i)8-s + (2.68 + 6.83i)9-s + (4.74 − 0.806i)10-s + (−0.627 − 0.246i)11-s + (6.39 + 0.719i)12-s + (0.189 − 0.151i)13-s + (−1.20 − 3.54i)14-s + (−8.56 − 6.82i)15-s + (2.25 − 3.30i)16-s + (2.64 + 2.84i)17-s + ⋯
L(s)  = 1  + (−0.970 + 0.240i)2-s + (1.53 + 1.04i)3-s + (0.884 − 0.467i)4-s + (−1.51 − 0.113i)5-s + (−1.74 − 0.645i)6-s + (0.0858 + 0.996i)7-s + (−0.745 + 0.666i)8-s + (0.894 + 2.27i)9-s + (1.50 − 0.255i)10-s + (−0.189 − 0.0742i)11-s + (1.84 + 0.207i)12-s + (0.0525 − 0.0419i)13-s + (−0.323 − 0.946i)14-s + (−2.21 − 1.76i)15-s + (0.563 − 0.826i)16-s + (0.641 + 0.691i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.186 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.186 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-0.186 - 0.982i$
Analytic conductor: \(1.56506\)
Root analytic conductor: \(1.25102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{196} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ -0.186 - 0.982i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.641027 + 0.774475i\)
\(L(\frac12)\) \(\approx\) \(0.641027 + 0.774475i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.37 - 0.340i)T \)
7 \( 1 + (-0.227 - 2.63i)T \)
good3 \( 1 + (-2.65 - 1.81i)T + (1.09 + 2.79i)T^{2} \)
5 \( 1 + (3.39 + 0.254i)T + (4.94 + 0.745i)T^{2} \)
11 \( 1 + (0.627 + 0.246i)T + (8.06 + 7.48i)T^{2} \)
13 \( 1 + (-0.189 + 0.151i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (-2.64 - 2.84i)T + (-1.27 + 16.9i)T^{2} \)
19 \( 1 + (-1.77 + 3.07i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.03 + 3.27i)T + (-1.71 - 22.9i)T^{2} \)
29 \( 1 + (0.473 + 2.07i)T + (-26.1 + 12.5i)T^{2} \)
31 \( 1 + (-0.307 - 0.532i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.57 + 0.485i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (1.74 + 3.61i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (-2.65 + 5.50i)T + (-26.8 - 33.6i)T^{2} \)
47 \( 1 + (-0.966 + 0.145i)T + (44.9 - 13.8i)T^{2} \)
53 \( 1 + (-8.02 + 2.47i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (0.668 + 8.92i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (1.03 - 3.34i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (-10.4 + 6.03i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-9.25 - 2.11i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (2.30 - 15.3i)T + (-69.7 - 21.5i)T^{2} \)
79 \( 1 + (8.66 + 5.00i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (2.81 - 3.53i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (2.77 - 1.08i)T + (65.2 - 60.5i)T^{2} \)
97 \( 1 - 0.505iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.61531666973513792167073376473, −11.49083263486802013568825843948, −10.56536172163568744169804851446, −9.502129699672768707789404043699, −8.565433014983015847210336391562, −8.251012712643700087015518043670, −7.22690788204821036857675180447, −5.16823456062782357440200005853, −3.70750714701103823229869750166, −2.57270604777212526574243901118, 1.13445068121144291336095562312, 3.02339769872739815050535782468, 3.82445548822777585756374273292, 6.88029657804592882718544761341, 7.59310774088054569961109292534, 7.911138547107778871034182968104, 8.960547150788764000199121497980, 10.04029695948633799637872329337, 11.35670717936622720270022608472, 12.16112850918461978176616659966

Graph of the $Z$-function along the critical line