L(s) = 1 | + (−0.925 + 1.06i)2-s + (−0.318 − 0.217i)3-s + (−0.285 − 1.97i)4-s + (−2.23 − 0.167i)5-s + (0.527 − 0.139i)6-s + (2.62 − 0.318i)7-s + (2.38 + 1.52i)8-s + (−1.04 − 2.65i)9-s + (2.24 − 2.23i)10-s + (4.62 + 1.81i)11-s + (−0.339 + 0.692i)12-s + (4.05 − 3.23i)13-s + (−2.09 + 3.10i)14-s + (0.675 + 0.538i)15-s + (−3.83 + 1.13i)16-s + (−1.83 − 1.97i)17-s + ⋯ |
L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.184 − 0.125i)3-s + (−0.142 − 0.989i)4-s + (−0.998 − 0.0748i)5-s + (0.215 − 0.0569i)6-s + (0.992 − 0.120i)7-s + (0.841 + 0.540i)8-s + (−0.347 − 0.884i)9-s + (0.710 − 0.705i)10-s + (1.39 + 0.547i)11-s + (−0.0979 + 0.200i)12-s + (1.12 − 0.897i)13-s + (−0.558 + 0.829i)14-s + (0.174 + 0.139i)15-s + (−0.959 + 0.282i)16-s + (−0.445 − 0.480i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.996+0.0853i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.996+0.0853i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.996+0.0853i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.996+0.0853i)
|
Particular Values
L(1) |
≈ |
0.783609−0.0334839i |
L(21) |
≈ |
0.783609−0.0334839i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.925−1.06i)T |
| 7 | 1+(−2.62+0.318i)T |
good | 3 | 1+(0.318+0.217i)T+(1.09+2.79i)T2 |
| 5 | 1+(2.23+0.167i)T+(4.94+0.745i)T2 |
| 11 | 1+(−4.62−1.81i)T+(8.06+7.48i)T2 |
| 13 | 1+(−4.05+3.23i)T+(2.89−12.6i)T2 |
| 17 | 1+(1.83+1.97i)T+(−1.27+16.9i)T2 |
| 19 | 1+(−1.20+2.08i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.13+2.29i)T+(−1.71−22.9i)T2 |
| 29 | 1+(−1.93−8.48i)T+(−26.1+12.5i)T2 |
| 31 | 1+(−0.0585−0.101i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.160+0.0494i)T+(30.5+20.8i)T2 |
| 41 | 1+(4.98+10.3i)T+(−25.5+32.0i)T2 |
| 43 | 1+(−1.97+4.09i)T+(−26.8−33.6i)T2 |
| 47 | 1+(10.2−1.54i)T+(44.9−13.8i)T2 |
| 53 | 1+(−2.75+0.850i)T+(43.7−29.8i)T2 |
| 59 | 1+(−0.758−10.1i)T+(−58.3+8.79i)T2 |
| 61 | 1+(2.62−8.51i)T+(−50.4−34.3i)T2 |
| 67 | 1+(5.07−2.92i)T+(33.5−58.0i)T2 |
| 71 | 1+(−9.49−2.16i)T+(63.9+30.8i)T2 |
| 73 | 1+(−1.11+7.37i)T+(−69.7−21.5i)T2 |
| 79 | 1+(−11.9−6.92i)T+(39.5+68.4i)T2 |
| 83 | 1+(−1.95+2.45i)T+(−18.4−80.9i)T2 |
| 89 | 1+(1.74−0.684i)T+(65.2−60.5i)T2 |
| 97 | 1+1.56iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.18580905845330917126342474402, −11.43128391697142906483020516600, −10.61352311619570416411641059421, −9.040082233303129324680352847195, −8.560739304282329393554353659131, −7.35600127166260757109555536761, −6.55236938268697636778500257895, −5.16043563273760311897836698210, −3.86890851423148176214128344192, −1.05974346359626297485786138455,
1.62341411520913351249910895030, 3.63359764209158424739184669782, 4.54203956821445050933237764688, 6.44255305665694440388119055116, 7.989433049087123970633602604150, 8.362165584010205082204063422297, 9.522327287036003405498955572962, 11.04051669843623766861985653371, 11.38332573142840841394170798115, 11.88173138296845707128044000020