L(s) = 1 | + (1.40 − 0.173i)2-s + (−0.470 − 0.589i)3-s + (1.94 − 0.486i)4-s + (0.701 − 0.559i)5-s + (−0.762 − 0.746i)6-s + (−0.938 + 2.47i)7-s + (2.63 − 1.01i)8-s + (0.540 − 2.37i)9-s + (0.888 − 0.907i)10-s + (−0.406 + 0.0927i)11-s + (−1.19 − 0.915i)12-s + (0.0704 − 0.0160i)13-s + (−0.889 + 3.63i)14-s + (−0.660 − 0.150i)15-s + (3.52 − 1.88i)16-s + (−1.30 + 2.70i)17-s + ⋯ |
L(s) = 1 | + (0.992 − 0.122i)2-s + (−0.271 − 0.340i)3-s + (0.970 − 0.243i)4-s + (0.313 − 0.250i)5-s + (−0.311 − 0.304i)6-s + (−0.354 + 0.934i)7-s + (0.932 − 0.359i)8-s + (0.180 − 0.790i)9-s + (0.280 − 0.286i)10-s + (−0.122 + 0.0279i)11-s + (−0.346 − 0.264i)12-s + (0.0195 − 0.00445i)13-s + (−0.237 + 0.971i)14-s + (−0.170 − 0.0389i)15-s + (0.881 − 0.471i)16-s + (−0.316 + 0.656i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.871+0.489i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.871+0.489i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.871+0.489i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.871+0.489i)
|
Particular Values
L(1) |
≈ |
1.88417−0.493081i |
L(21) |
≈ |
1.88417−0.493081i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.40+0.173i)T |
| 7 | 1+(0.938−2.47i)T |
good | 3 | 1+(0.470+0.589i)T+(−0.667+2.92i)T2 |
| 5 | 1+(−0.701+0.559i)T+(1.11−4.87i)T2 |
| 11 | 1+(0.406−0.0927i)T+(9.91−4.77i)T2 |
| 13 | 1+(−0.0704+0.0160i)T+(11.7−5.64i)T2 |
| 17 | 1+(1.30−2.70i)T+(−10.5−13.2i)T2 |
| 19 | 1+7.07T+19T2 |
| 23 | 1+(−0.339−0.706i)T+(−14.3+17.9i)T2 |
| 29 | 1+(−4.62−2.22i)T+(18.0+22.6i)T2 |
| 31 | 1−2.54T+31T2 |
| 37 | 1+(7.13+3.43i)T+(23.0+28.9i)T2 |
| 41 | 1+(5.37−4.28i)T+(9.12−39.9i)T2 |
| 43 | 1+(−3.75−2.99i)T+(9.56+41.9i)T2 |
| 47 | 1+(0.549+2.40i)T+(−42.3+20.3i)T2 |
| 53 | 1+(5.53−2.66i)T+(33.0−41.4i)T2 |
| 59 | 1+(−6.25+7.84i)T+(−13.1−57.5i)T2 |
| 61 | 1+(−5.42+11.2i)T+(−38.0−47.6i)T2 |
| 67 | 1+10.3iT−67T2 |
| 71 | 1+(−3.56−7.40i)T+(−44.2+55.5i)T2 |
| 73 | 1+(−11.0−2.52i)T+(65.7+31.6i)T2 |
| 79 | 1+8.93iT−79T2 |
| 83 | 1+(0.295−1.29i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−3.97−0.906i)T+(80.1+38.6i)T2 |
| 97 | 1−12.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.69908712889988580060794344899, −11.77180789922614645923417219020, −10.73530279993332676426557844172, −9.554714235403499093949160292713, −8.371188730744883722003111973377, −6.72059300216607524674509267186, −6.14963027578595144096509393403, −5.00817065810136705602475835270, −3.54081104856381181197745571369, −1.96789192094837810030991889595,
2.41076258058828814050132025864, 4.03717959705686027450843392956, 4.92601323255985730878188095979, 6.28133916809896860464113566023, 7.10801075186352128246875888143, 8.339931088187970050713209752455, 10.23974695503839588955374573177, 10.52894942277785424312119475991, 11.64335349726221773217343307181, 12.79509701625209941065141745762