L(s) = 1 | + (−1.02 + 0.979i)2-s + (−1.63 + 1.11i)3-s + (0.0826 − 1.99i)4-s + (2.43 − 0.182i)5-s + (0.577 − 2.74i)6-s + (1.91 + 1.82i)7-s + (1.87 + 2.12i)8-s + (0.337 − 0.859i)9-s + (−2.30 + 2.57i)10-s + (−2.09 + 0.823i)11-s + (2.09 + 3.36i)12-s + (0.425 + 0.339i)13-s + (−3.74 + 0.00463i)14-s + (−3.78 + 3.01i)15-s + (−3.98 − 0.330i)16-s + (−2.31 + 2.49i)17-s + ⋯ |
L(s) = 1 | + (−0.721 + 0.692i)2-s + (−0.944 + 0.644i)3-s + (0.0413 − 0.999i)4-s + (1.08 − 0.0816i)5-s + (0.235 − 1.11i)6-s + (0.722 + 0.691i)7-s + (0.661 + 0.749i)8-s + (0.112 − 0.286i)9-s + (−0.729 + 0.813i)10-s + (−0.632 + 0.248i)11-s + (0.604 + 0.970i)12-s + (0.117 + 0.0940i)13-s + (−0.999 + 0.00123i)14-s + (−0.976 + 0.779i)15-s + (−0.996 − 0.0825i)16-s + (−0.562 + 0.606i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.455−0.890i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.455−0.890i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.455−0.890i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.455−0.890i)
|
Particular Values
L(1) |
≈ |
0.377315+0.616698i |
L(21) |
≈ |
0.377315+0.616698i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.02−0.979i)T |
| 7 | 1+(−1.91−1.82i)T |
good | 3 | 1+(1.63−1.11i)T+(1.09−2.79i)T2 |
| 5 | 1+(−2.43+0.182i)T+(4.94−0.745i)T2 |
| 11 | 1+(2.09−0.823i)T+(8.06−7.48i)T2 |
| 13 | 1+(−0.425−0.339i)T+(2.89+12.6i)T2 |
| 17 | 1+(2.31−2.49i)T+(−1.27−16.9i)T2 |
| 19 | 1+(0.309+0.535i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−5.40−5.82i)T+(−1.71+22.9i)T2 |
| 29 | 1+(1.87−8.19i)T+(−26.1−12.5i)T2 |
| 31 | 1+(−0.779+1.35i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−11.4+3.53i)T+(30.5−20.8i)T2 |
| 41 | 1+(0.189−0.393i)T+(−25.5−32.0i)T2 |
| 43 | 1+(2.48+5.15i)T+(−26.8+33.6i)T2 |
| 47 | 1+(2.28+0.344i)T+(44.9+13.8i)T2 |
| 53 | 1+(−1.32−0.407i)T+(43.7+29.8i)T2 |
| 59 | 1+(−0.851+11.3i)T+(−58.3−8.79i)T2 |
| 61 | 1+(4.06+13.1i)T+(−50.4+34.3i)T2 |
| 67 | 1+(5.00+2.89i)T+(33.5+58.0i)T2 |
| 71 | 1+(−9.15+2.08i)T+(63.9−30.8i)T2 |
| 73 | 1+(−0.0617−0.409i)T+(−69.7+21.5i)T2 |
| 79 | 1+(−5.72+3.30i)T+(39.5−68.4i)T2 |
| 83 | 1+(−5.68−7.12i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−2.24−0.879i)T+(65.2+60.5i)T2 |
| 97 | 1+16.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.87349876005850017503366856722, −11.27853298618573098736480139493, −10.84151785131566691279195658692, −9.764013910537154760720441441503, −9.023257226873562151266832124272, −7.81681829774802727799471950698, −6.37110850401857206187662674471, −5.45284799855962929190333534901, −4.92097194907541784584189748568, −1.94539781430128658757605064105,
0.955856899306573965428602064407, 2.50963899366327486340994039708, 4.62331023946777626850552918624, 6.04477210281411513909401175764, 7.07404727994871619491724739312, 8.162180771656028572976941793899, 9.418188098331164778265459921714, 10.44504713951519309750733650479, 11.13257333211896226609910654397, 11.91035175257004534180725405793