L(s) = 1 | + (−0.565 + 5.62i)2-s + 16.9·3-s + (−31.3 − 6.36i)4-s − 9.31i·5-s + (−9.56 + 95.2i)6-s + (53.5 − 172. i)8-s + 43.5·9-s + (52.4 + 5.26i)10-s + 42.9i·11-s + (−530. − 107. i)12-s + 607. i·13-s − 157. i·15-s + (943. + 398. i)16-s + 568. i·17-s + (−24.5 + 244. i)18-s − 2.51e3·19-s + ⋯ |
L(s) = 1 | + (−0.0998 + 0.994i)2-s + 1.08·3-s + (−0.980 − 0.198i)4-s − 0.166i·5-s + (−0.108 + 1.08i)6-s + (0.295 − 0.955i)8-s + 0.179·9-s + (0.165 + 0.0166i)10-s + 0.107i·11-s + (−1.06 − 0.215i)12-s + 0.997i·13-s − 0.180i·15-s + (0.920 + 0.389i)16-s + 0.476i·17-s + (−0.0178 + 0.178i)18-s − 1.59·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.219i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.975 + 0.219i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.107031890\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.107031890\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.565 - 5.62i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 16.9T + 243T^{2} \) |
| 5 | \( 1 + 9.31iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 42.9iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 607. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 568. iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 2.51e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 2.05e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 6.87e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 2.40e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.49e4T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.41e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.26e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.25e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.02e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.47e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.97e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 2.19e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.04e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 3.84e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 8.28e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + 5.23e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 384. iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 4.95e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53859855652110624632350258291, −10.99413798474761649856444018109, −9.660940785598896926109778813915, −8.892379337504356349862242181062, −8.231723579394378388248042347194, −7.15642659103070537404398454875, −6.08515433526271049856211668720, −4.64702201418334333865759383642, −3.54926655874802376504461004823, −1.79945909854449610517676098815,
0.28861165551966822362461551757, 2.07684002568769426750330969968, 2.99744075848361015432027199012, 4.05188376357100386401539675475, 5.51202424749800468776633527411, 7.31321306132347918169724185050, 8.560108494408197365317662176701, 8.892459543191374243489399494112, 10.26281641437967542518795866873, 10.85520847318506779723923110082