L(s) = 1 | + (−0.565 + 5.62i)2-s + 16.9·3-s + (−31.3 − 6.36i)4-s − 9.31i·5-s + (−9.56 + 95.2i)6-s + (53.5 − 172. i)8-s + 43.5·9-s + (52.4 + 5.26i)10-s + 42.9i·11-s + (−530. − 107. i)12-s + 607. i·13-s − 157. i·15-s + (943. + 398. i)16-s + 568. i·17-s + (−24.5 + 244. i)18-s − 2.51e3·19-s + ⋯ |
L(s) = 1 | + (−0.0998 + 0.994i)2-s + 1.08·3-s + (−0.980 − 0.198i)4-s − 0.166i·5-s + (−0.108 + 1.08i)6-s + (0.295 − 0.955i)8-s + 0.179·9-s + (0.165 + 0.0166i)10-s + 0.107i·11-s + (−1.06 − 0.215i)12-s + 0.997i·13-s − 0.180i·15-s + (0.920 + 0.389i)16-s + 0.476i·17-s + (−0.0178 + 0.178i)18-s − 1.59·19-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.975+0.219i)Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)(−0.975+0.219i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.975+0.219i
|
Analytic conductor: |
31.4352 |
Root analytic conductor: |
5.60671 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(195,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :5/2), −0.975+0.219i)
|
Particular Values
L(3) |
≈ |
1.107031890 |
L(21) |
≈ |
1.107031890 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.565−5.62i)T |
| 7 | 1 |
good | 3 | 1−16.9T+243T2 |
| 5 | 1+9.31iT−3.12e3T2 |
| 11 | 1−42.9iT−1.61e5T2 |
| 13 | 1−607.iT−3.71e5T2 |
| 17 | 1−568.iT−1.41e6T2 |
| 19 | 1+2.51e3T+2.47e6T2 |
| 23 | 1−2.05e3iT−6.43e6T2 |
| 29 | 1+6.87e3T+2.05e7T2 |
| 31 | 1−2.40e3T+2.86e7T2 |
| 37 | 1+1.49e4T+6.93e7T2 |
| 41 | 1−1.41e4iT−1.15e8T2 |
| 43 | 1−1.26e4iT−1.47e8T2 |
| 47 | 1−1.25e4T+2.29e8T2 |
| 53 | 1−1.02e4T+4.18e8T2 |
| 59 | 1+2.47e4T+7.14e8T2 |
| 61 | 1+3.97e4iT−8.44e8T2 |
| 67 | 1+2.19e4iT−1.35e9T2 |
| 71 | 1+1.04e4iT−1.80e9T2 |
| 73 | 1+3.84e4iT−2.07e9T2 |
| 79 | 1−8.28e4iT−3.07e9T2 |
| 83 | 1+5.23e4T+3.93e9T2 |
| 89 | 1−384.iT−5.58e9T2 |
| 97 | 1+4.95e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53859855652110624632350258291, −10.99413798474761649856444018109, −9.660940785598896926109778813915, −8.892379337504356349862242181062, −8.231723579394378388248042347194, −7.15642659103070537404398454875, −6.08515433526271049856211668720, −4.64702201418334333865759383642, −3.54926655874802376504461004823, −1.79945909854449610517676098815,
0.28861165551966822362461551757, 2.07684002568769426750330969968, 2.99744075848361015432027199012, 4.05188376357100386401539675475, 5.51202424749800468776633527411, 7.31321306132347918169724185050, 8.560108494408197365317662176701, 8.892459543191374243489399494112, 10.26281641437967542518795866873, 10.85520847318506779723923110082