L(s) = 1 | + (1.57 + 5.43i)2-s − 7.64·3-s + (−27.0 + 17.1i)4-s − 63.9i·5-s + (−12.0 − 41.5i)6-s + (−135. − 119. i)8-s − 184.·9-s + (347. − 100. i)10-s − 601. i·11-s + (206. − 130. i)12-s + 890. i·13-s + 488. i·15-s + (436. − 926. i)16-s + 116. i·17-s + (−291. − 1.00e3i)18-s + 901.·19-s + ⋯ |
L(s) = 1 | + (0.278 + 0.960i)2-s − 0.490·3-s + (−0.844 + 0.535i)4-s − 1.14i·5-s + (−0.136 − 0.470i)6-s + (−0.749 − 0.661i)8-s − 0.759·9-s + (1.09 − 0.318i)10-s − 1.49i·11-s + (0.414 − 0.262i)12-s + 1.46i·13-s + 0.560i·15-s + (0.426 − 0.904i)16-s + 0.0978i·17-s + (−0.211 − 0.729i)18-s + 0.573·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.396 - 0.917i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.396 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.085995177\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.085995177\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.57 - 5.43i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 7.64T + 243T^{2} \) |
| 5 | \( 1 + 63.9iT - 3.12e3T^{2} \) |
| 11 | \( 1 + 601. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 890. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 116. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 901.T + 2.47e6T^{2} \) |
| 23 | \( 1 - 3.88e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 124.T + 2.05e7T^{2} \) |
| 31 | \( 1 + 7.11T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.50e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.93e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 2.30e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 8.62e3T + 2.29e8T^{2} \) |
| 53 | \( 1 + 2.81e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 5.26e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.39e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 4.95e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 6.72e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 3.96e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 5.60e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 1.42e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 1.19e5iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 5.12e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87233925823795715813503386961, −11.36252788807899249368540324517, −9.479556658490599227401086332961, −8.791404845899280847693358270828, −7.954128268491671785299760844120, −6.49102384024320324715806839407, −5.62619729346174372133916884929, −4.78748806528215245130252010779, −3.43739564416935754928894537421, −0.958844049510372326062902434849,
0.41987500096200220108342475654, 2.32588440946119157417094683994, 3.24191351276746786130093548786, 4.77389698495591046463947933804, 5.82505388786763187386612448502, 7.04189954314529672885548203758, 8.403049599989077376035090595444, 9.846200398387965027757524390729, 10.49026189725845663808042123998, 11.21065235180953759858625225690