L(s) = 1 | + (1.57 + 5.43i)2-s − 7.64·3-s + (−27.0 + 17.1i)4-s − 63.9i·5-s + (−12.0 − 41.5i)6-s + (−135. − 119. i)8-s − 184.·9-s + (347. − 100. i)10-s − 601. i·11-s + (206. − 130. i)12-s + 890. i·13-s + 488. i·15-s + (436. − 926. i)16-s + 116. i·17-s + (−291. − 1.00e3i)18-s + 901.·19-s + ⋯ |
L(s) = 1 | + (0.278 + 0.960i)2-s − 0.490·3-s + (−0.844 + 0.535i)4-s − 1.14i·5-s + (−0.136 − 0.470i)6-s + (−0.749 − 0.661i)8-s − 0.759·9-s + (1.09 − 0.318i)10-s − 1.49i·11-s + (0.414 − 0.262i)12-s + 1.46i·13-s + 0.560i·15-s + (0.426 − 0.904i)16-s + 0.0978i·17-s + (−0.211 − 0.729i)18-s + 0.573·19-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.396−0.917i)Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)(−0.396−0.917i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.396−0.917i
|
Analytic conductor: |
31.4352 |
Root analytic conductor: |
5.60671 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(195,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :5/2), −0.396−0.917i)
|
Particular Values
L(3) |
≈ |
1.085995177 |
L(21) |
≈ |
1.085995177 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.57−5.43i)T |
| 7 | 1 |
good | 3 | 1+7.64T+243T2 |
| 5 | 1+63.9iT−3.12e3T2 |
| 11 | 1+601.iT−1.61e5T2 |
| 13 | 1−890.iT−3.71e5T2 |
| 17 | 1−116.iT−1.41e6T2 |
| 19 | 1−901.T+2.47e6T2 |
| 23 | 1−3.88e3iT−6.43e6T2 |
| 29 | 1−124.T+2.05e7T2 |
| 31 | 1+7.11T+2.86e7T2 |
| 37 | 1−1.50e3T+6.93e7T2 |
| 41 | 1−1.93e4iT−1.15e8T2 |
| 43 | 1+2.30e3iT−1.47e8T2 |
| 47 | 1+8.62e3T+2.29e8T2 |
| 53 | 1+2.81e4T+4.18e8T2 |
| 59 | 1−5.26e4T+7.14e8T2 |
| 61 | 1−2.39e4iT−8.44e8T2 |
| 67 | 1+4.95e4iT−1.35e9T2 |
| 71 | 1−6.72e4iT−1.80e9T2 |
| 73 | 1+3.96e4iT−2.07e9T2 |
| 79 | 1+5.60e4iT−3.07e9T2 |
| 83 | 1−1.42e4T+3.93e9T2 |
| 89 | 1−1.19e5iT−5.58e9T2 |
| 97 | 1−5.12e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87233925823795715813503386961, −11.36252788807899249368540324517, −9.479556658490599227401086332961, −8.791404845899280847693358270828, −7.954128268491671785299760844120, −6.49102384024320324715806839407, −5.62619729346174372133916884929, −4.78748806528215245130252010779, −3.43739564416935754928894537421, −0.958844049510372326062902434849,
0.41987500096200220108342475654, 2.32588440946119157417094683994, 3.24191351276746786130093548786, 4.77389698495591046463947933804, 5.82505388786763187386612448502, 7.04189954314529672885548203758, 8.403049599989077376035090595444, 9.846200398387965027757524390729, 10.49026189725845663808042123998, 11.21065235180953759858625225690