L(s) = 1 | + (−5.48 − 1.38i)2-s − 26.5·3-s + (28.1 + 15.2i)4-s + 52.9i·5-s + (145. + 36.7i)6-s + (−133. − 122. i)8-s + 460.·9-s + (73.4 − 290. i)10-s + 105. i·11-s + (−746. − 403. i)12-s − 827. i·13-s − 1.40e3i·15-s + (561. + 856. i)16-s + 1.75e3i·17-s + (−2.52e3 − 638. i)18-s − 3.02e3·19-s + ⋯ |
L(s) = 1 | + (−0.969 − 0.245i)2-s − 1.70·3-s + (0.879 + 0.475i)4-s + 0.947i·5-s + (1.64 + 0.417i)6-s + (−0.736 − 0.676i)8-s + 1.89·9-s + (0.232 − 0.919i)10-s + 0.263i·11-s + (−1.49 − 0.808i)12-s − 1.35i·13-s − 1.61i·15-s + (0.548 + 0.836i)16-s + 1.47i·17-s + (−1.83 − 0.464i)18-s − 1.92·19-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.997+0.0737i)Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)(0.997+0.0737i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.997+0.0737i
|
Analytic conductor: |
31.4352 |
Root analytic conductor: |
5.60671 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(195,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :5/2), 0.997+0.0737i)
|
Particular Values
L(3) |
≈ |
0.3921898852 |
L(21) |
≈ |
0.3921898852 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(5.48+1.38i)T |
| 7 | 1 |
good | 3 | 1+26.5T+243T2 |
| 5 | 1−52.9iT−3.12e3T2 |
| 11 | 1−105.iT−1.61e5T2 |
| 13 | 1+827.iT−3.71e5T2 |
| 17 | 1−1.75e3iT−1.41e6T2 |
| 19 | 1+3.02e3T+2.47e6T2 |
| 23 | 1+2.13e3iT−6.43e6T2 |
| 29 | 1+3.80e3T+2.05e7T2 |
| 31 | 1+7.10e3T+2.86e7T2 |
| 37 | 1+202.T+6.93e7T2 |
| 41 | 1+7.21e3iT−1.15e8T2 |
| 43 | 1+1.39e4iT−1.47e8T2 |
| 47 | 1−1.33e4T+2.29e8T2 |
| 53 | 1−1.19e4T+4.18e8T2 |
| 59 | 1−1.30e3T+7.14e8T2 |
| 61 | 1−1.35e4iT−8.44e8T2 |
| 67 | 1+3.99e4iT−1.35e9T2 |
| 71 | 1+2.95e4iT−1.80e9T2 |
| 73 | 1−5.43e4iT−2.07e9T2 |
| 79 | 1−8.69e4iT−3.07e9T2 |
| 83 | 1−5.07e4T+3.93e9T2 |
| 89 | 1+2.16e4iT−5.58e9T2 |
| 97 | 1−4.60e3iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10680642571416892728629592340, −10.60959335819753039035655333236, −10.29261188527787930677842400323, −8.602561825466709710017050985228, −7.32878637896082123247405620239, −6.46233979988778082498588790008, −5.68478279950016108007108939676, −3.86929578838428002571764211541, −2.07856697561917344190642678616, −0.43126290116962494598141457186,
0.53512234954362746254414966515, 1.75047927645228496508674710433, 4.49744371049738628762846180652, 5.48907396848420525809489886772, 6.46250955907779138377406378807, 7.34918221088904000528831225102, 8.854189234321673167395621106587, 9.568450919977591254188027637982, 10.83315790401838923868671559591, 11.43449405017763717233283341832