L(s) = 1 | + (−5.48 − 1.38i)2-s − 26.5·3-s + (28.1 + 15.2i)4-s + 52.9i·5-s + (145. + 36.7i)6-s + (−133. − 122. i)8-s + 460.·9-s + (73.4 − 290. i)10-s + 105. i·11-s + (−746. − 403. i)12-s − 827. i·13-s − 1.40e3i·15-s + (561. + 856. i)16-s + 1.75e3i·17-s + (−2.52e3 − 638. i)18-s − 3.02e3·19-s + ⋯ |
L(s) = 1 | + (−0.969 − 0.245i)2-s − 1.70·3-s + (0.879 + 0.475i)4-s + 0.947i·5-s + (1.64 + 0.417i)6-s + (−0.736 − 0.676i)8-s + 1.89·9-s + (0.232 − 0.919i)10-s + 0.263i·11-s + (−1.49 − 0.808i)12-s − 1.35i·13-s − 1.61i·15-s + (0.548 + 0.836i)16-s + 1.47i·17-s + (−1.83 − 0.464i)18-s − 1.92·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0737i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0737i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.3921898852\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3921898852\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (5.48 + 1.38i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 26.5T + 243T^{2} \) |
| 5 | \( 1 - 52.9iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 105. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 827. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 1.75e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 3.02e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.13e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 3.80e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 7.10e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 202.T + 6.93e7T^{2} \) |
| 41 | \( 1 + 7.21e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + 1.39e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.33e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.19e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 1.30e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.35e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 3.99e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 2.95e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 - 5.43e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 8.69e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 5.07e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 2.16e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 4.60e3iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10680642571416892728629592340, −10.60959335819753039035655333236, −10.29261188527787930677842400323, −8.602561825466709710017050985228, −7.32878637896082123247405620239, −6.46233979988778082498588790008, −5.68478279950016108007108939676, −3.86929578838428002571764211541, −2.07856697561917344190642678616, −0.43126290116962494598141457186,
0.53512234954362746254414966515, 1.75047927645228496508674710433, 4.49744371049738628762846180652, 5.48907396848420525809489886772, 6.46250955907779138377406378807, 7.34918221088904000528831225102, 8.854189234321673167395621106587, 9.568450919977591254188027637982, 10.83315790401838923868671559591, 11.43449405017763717233283341832