L(s) = 1 | + 2.23i·2-s + (−2 − 2.23i)3-s − 1.00·4-s − 2.23i·5-s + (5.00 − 4.47i)6-s − 6·7-s + 6.70i·8-s + (−1.00 + 8.94i)9-s + 5.00·10-s − 4.47i·11-s + (2.00 + 2.23i)12-s + 16·13-s − 13.4i·14-s + (−5.00 + 4.47i)15-s − 19·16-s − 4.47i·17-s + ⋯ |
L(s) = 1 | + 1.11i·2-s + (−0.666 − 0.745i)3-s − 0.250·4-s − 0.447i·5-s + (0.833 − 0.745i)6-s − 0.857·7-s + 0.838i·8-s + (−0.111 + 0.993i)9-s + 0.500·10-s − 0.406i·11-s + (0.166 + 0.186i)12-s + 1.23·13-s − 0.958i·14-s + (−0.333 + 0.298i)15-s − 1.18·16-s − 0.263i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.646624 + 0.246988i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.646624 + 0.246988i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2 + 2.23i)T \) |
| 5 | \( 1 + 2.23iT \) |
good | 2 | \( 1 - 2.23iT - 4T^{2} \) |
| 7 | \( 1 + 6T + 49T^{2} \) |
| 11 | \( 1 + 4.47iT - 121T^{2} \) |
| 13 | \( 1 - 16T + 169T^{2} \) |
| 17 | \( 1 + 4.47iT - 289T^{2} \) |
| 19 | \( 1 + 2T + 361T^{2} \) |
| 23 | \( 1 + 13.4iT - 529T^{2} \) |
| 29 | \( 1 - 31.3iT - 841T^{2} \) |
| 31 | \( 1 + 18T + 961T^{2} \) |
| 37 | \( 1 + 16T + 1.36e3T^{2} \) |
| 41 | \( 1 + 62.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 16T + 1.84e3T^{2} \) |
| 47 | \( 1 - 49.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 4.47iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 4.47iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 82T + 3.72e3T^{2} \) |
| 67 | \( 1 - 24T + 4.48e3T^{2} \) |
| 71 | \( 1 - 125. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 74T + 5.32e3T^{2} \) |
| 79 | \( 1 - 138T + 6.24e3T^{2} \) |
| 83 | \( 1 - 93.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 107. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 166T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.04285858142557514784321773720, −17.76606447551716060483375990777, −16.49831964637036568070713956991, −15.92254789929129234289959207944, −13.95866256681387457806397154503, −12.68544331486549814745919762072, −11.05046670259334216137570596707, −8.555588049631488199187956317696, −6.89108609505129160058815916512, −5.68732210018541315600141812996,
3.64213518169807278952791352950, 6.39278214583289871634882090431, 9.556881881402575780202953749311, 10.63652752406966828619200485829, 11.73076231917341402814225469725, 13.14136327212728335570193545447, 15.31183624438809672746134681529, 16.33663545296476791170032337065, 18.01263456560359807346814205390, 19.26169490422754119912058216377