L(s) = 1 | − 8·2-s − 27·3-s + 64·4-s + 216·6-s − 349·7-s − 512·8-s + 729·9-s + 1.18e3·11-s − 1.72e3·12-s − 1.72e3·13-s + 2.79e3·14-s + 4.09e3·16-s − 7.49e3·17-s − 5.83e3·18-s + 1.27e4·19-s + 9.42e3·21-s − 9.45e3·22-s + 6.40e3·23-s + 1.38e4·24-s + 1.37e4·26-s − 1.96e4·27-s − 2.23e4·28-s + 1.08e5·29-s + 1.42e5·31-s − 3.27e4·32-s − 3.19e4·33-s + 5.99e4·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.384·7-s − 0.353·8-s + 1/3·9-s + 0.267·11-s − 0.288·12-s − 0.217·13-s + 0.271·14-s + 1/4·16-s − 0.369·17-s − 0.235·18-s + 0.427·19-s + 0.222·21-s − 0.189·22-s + 0.109·23-s + 0.204·24-s + 0.153·26-s − 0.192·27-s − 0.192·28-s + 0.822·29-s + 0.858·31-s − 0.176·32-s − 0.154·33-s + 0.261·34-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p3T |
| 3 | 1+p3T |
| 5 | 1 |
good | 7 | 1+349T+p7T2 |
| 11 | 1−1182T+p7T2 |
| 13 | 1+1723T+p7T2 |
| 17 | 1+7494T+p7T2 |
| 19 | 1−12785T+p7T2 |
| 23 | 1−6402T+p7T2 |
| 29 | 1−108090T+p7T2 |
| 31 | 1−142427T+p7T2 |
| 37 | 1−276266T+p7T2 |
| 41 | 1−525072T+p7T2 |
| 43 | 1+747013T+p7T2 |
| 47 | 1−571326T+p7T2 |
| 53 | 1+1472028T+p7T2 |
| 59 | 1+1582110T+p7T2 |
| 61 | 1+932893T+p7T2 |
| 67 | 1+1688089T+p7T2 |
| 71 | 1−2962752T+p7T2 |
| 73 | 1+4078798T+p7T2 |
| 79 | 1+5635360T+p7T2 |
| 83 | 1+3120318T+p7T2 |
| 89 | 1+9155040T+p7T2 |
| 97 | 1+10041199T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12694845589798813694123368819, −10.09880566160050835078353020577, −9.276093177671324661450215698427, −8.043075379459003587699181091881, −6.88886532025233144731988666985, −5.98949402032303233485521144938, −4.54052090392755121003541752833, −2.88641641666643973884806475781, −1.27871572286614365546431515389, 0,
1.27871572286614365546431515389, 2.88641641666643973884806475781, 4.54052090392755121003541752833, 5.98949402032303233485521144938, 6.88886532025233144731988666985, 8.043075379459003587699181091881, 9.276093177671324661450215698427, 10.09880566160050835078353020577, 11.12694845589798813694123368819