L(s) = 1 | + 1.41·2-s + (1.52 + 2.58i)3-s + 2.00·4-s + (2.16 + 3.65i)6-s + 7.48i·7-s + 2.82·8-s + (−4.32 + 7.89i)9-s − 8.48i·11-s + (3.05 + 5.16i)12-s − 10i·13-s + 10.5i·14-s + 4.00·16-s + 30.3·17-s + (−6.11 + 11.1i)18-s − 26.9·19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.509 + 0.860i)3-s + 0.500·4-s + (0.360 + 0.608i)6-s + 1.06i·7-s + 0.353·8-s + (−0.480 + 0.876i)9-s − 0.771i·11-s + (0.254 + 0.430i)12-s − 0.769i·13-s + 0.756i·14-s + 0.250·16-s + 1.78·17-s + (−0.339 + 0.620i)18-s − 1.41·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.541−0.840i)Λ(3−s)
Λ(s)=(=(150s/2ΓC(s+1)L(s)(0.541−0.840i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.541−0.840i
|
Analytic conductor: |
4.08720 |
Root analytic conductor: |
2.02168 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :1), 0.541−0.840i)
|
Particular Values
L(23) |
≈ |
2.16121+1.17847i |
L(21) |
≈ |
2.16121+1.17847i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−1.41T |
| 3 | 1+(−1.52−2.58i)T |
| 5 | 1 |
good | 7 | 1−7.48iT−49T2 |
| 11 | 1+8.48iT−121T2 |
| 13 | 1+10iT−169T2 |
| 17 | 1−30.3T+289T2 |
| 19 | 1+26.9T+361T2 |
| 23 | 1−9.17T+529T2 |
| 29 | 1+26.8iT−841T2 |
| 31 | 1−8T+961T2 |
| 37 | 1+15.9iT−1.36e3T2 |
| 41 | 1+47.3iT−1.68e3T2 |
| 43 | 1+14.4iT−1.84e3T2 |
| 47 | 1+45.8T+2.20e3T2 |
| 53 | 1+30.3T+2.80e3T2 |
| 59 | 1+24.0iT−3.48e3T2 |
| 61 | 1+53.9T+3.72e3T2 |
| 67 | 1−110.iT−4.48e3T2 |
| 71 | 1+15.5iT−5.04e3T2 |
| 73 | 1−87.9iT−5.32e3T2 |
| 79 | 1−46.9T+6.24e3T2 |
| 83 | 1−26.1T+6.88e3T2 |
| 89 | 1−60.7iT−7.92e3T2 |
| 97 | 1+36.0iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.98314935262949686336331196059, −12.03560688224170915022710444779, −10.92652949290726808765235874023, −9.993352591803428770687886484087, −8.749427492223122272097870633545, −7.896578276129167112954996531661, −5.98664784951455197102931214773, −5.21076881641888786069541884885, −3.69558346587960620401120730404, −2.58926661467084293340603813935,
1.55235360461407244243748556206, 3.28628954233851860633489864972, 4.59682451486433025647897038491, 6.32184853307430497579382756250, 7.18726871974569952408570515948, 8.089423692445458428968936679018, 9.588874636595068378878493523961, 10.74665530356542888354935279185, 12.00337832099193586772924188548, 12.72930667842318176411271279812