Properties

Label 2-150-15.14-c2-0-9
Degree $2$
Conductor $150$
Sign $0.265 + 0.964i$
Analytic cond. $4.08720$
Root an. cond. $2.02168$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·2-s + (−2.94 − 0.581i)3-s + 2.00·4-s + (−4.16 − 0.821i)6-s − 11.4i·7-s + 2.82·8-s + (8.32 + 3.42i)9-s − 8.48i·11-s + (−5.88 − 1.16i)12-s − 10i·13-s − 16.2i·14-s + 4.00·16-s + 3.55·17-s + (11.7 + 4.83i)18-s + 10.9·19-s + ⋯
L(s)  = 1  + 0.707·2-s + (−0.981 − 0.193i)3-s + 0.500·4-s + (−0.693 − 0.136i)6-s − 1.64i·7-s + 0.353·8-s + (0.924 + 0.380i)9-s − 0.771i·11-s + (−0.490 − 0.0968i)12-s − 0.769i·13-s − 1.16i·14-s + 0.250·16-s + 0.209·17-s + (0.654 + 0.268i)18-s + 0.577·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.265 + 0.964i$
Analytic conductor: \(4.08720\)
Root analytic conductor: \(2.02168\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1),\ 0.265 + 0.964i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.23400 - 0.940133i\)
\(L(\frac12)\) \(\approx\) \(1.23400 - 0.940133i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.41T \)
3 \( 1 + (2.94 + 0.581i)T \)
5 \( 1 \)
good7 \( 1 + 11.4iT - 49T^{2} \)
11 \( 1 + 8.48iT - 121T^{2} \)
13 \( 1 + 10iT - 169T^{2} \)
17 \( 1 - 3.55T + 289T^{2} \)
19 \( 1 - 10.9T + 361T^{2} \)
23 \( 1 + 17.6T + 529T^{2} \)
29 \( 1 - 26.8iT - 841T^{2} \)
31 \( 1 - 8T + 961T^{2} \)
37 \( 1 - 59.9iT - 1.36e3T^{2} \)
41 \( 1 + 20.5iT - 1.68e3T^{2} \)
43 \( 1 - 42.4iT - 1.84e3T^{2} \)
47 \( 1 - 88.2T + 2.20e3T^{2} \)
53 \( 1 + 3.55T + 2.80e3T^{2} \)
59 \( 1 + 77.7iT - 3.48e3T^{2} \)
61 \( 1 - 21.9T + 3.72e3T^{2} \)
67 \( 1 - 53.5iT - 4.48e3T^{2} \)
71 \( 1 + 69.2iT - 5.04e3T^{2} \)
73 \( 1 - 12.0iT - 5.32e3T^{2} \)
79 \( 1 - 9.02T + 6.24e3T^{2} \)
83 \( 1 + 0.688T + 6.88e3T^{2} \)
89 \( 1 - 7.10iT - 7.92e3T^{2} \)
97 \( 1 + 111. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65498674180014101887927847194, −11.57404322635515980743865465586, −10.71128495996772482866525087807, −10.04973508948896779284195224586, −7.937818850961356524949436099746, −7.02528036431670267185252558277, −5.94489441369533459328623327066, −4.76969077378106107655043014792, −3.52953055754004709474721755848, −0.964200928946424616129808671689, 2.18991163283358657407662226652, 4.17313098606916738180379088757, 5.38654630373253069874280721883, 6.11638611596209040401708569206, 7.37713661315932666495708297689, 9.053513165235013559243034970168, 10.05998108095342431461236868199, 11.39581031325839089791694398442, 12.07831079669037945649985798242, 12.57824048514611523524379936269

Graph of the $Z$-function along the critical line