L(s) = 1 | + (−5.65 + 5.65i)2-s + (33.2 + 32.8i)3-s − 64.0i·4-s + (−374. + 2.40i)6-s + (919. + 919. i)7-s + (362. + 362. i)8-s + (28.1 + 2.18e3i)9-s + 7.17e3i·11-s + (2.10e3 − 2.12e3i)12-s + (1.91e3 − 1.91e3i)13-s − 1.04e4·14-s − 4.09e3·16-s + (1.51e4 − 1.51e4i)17-s + (−1.25e4 − 1.22e4i)18-s − 3.02e4i·19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.711 + 0.702i)3-s − 0.500i·4-s + (−0.707 + 0.00455i)6-s + (1.01 + 1.01i)7-s + (0.250 + 0.250i)8-s + (0.0128 + 0.999i)9-s + 1.62i·11-s + (0.351 − 0.355i)12-s + (0.241 − 0.241i)13-s − 1.01·14-s − 0.250·16-s + (0.746 − 0.746i)17-s + (−0.506 − 0.493i)18-s − 1.01i·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(−0.854−0.520i)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)(−0.854−0.520i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
−0.854−0.520i
|
Analytic conductor: |
46.8577 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :7/2), −0.854−0.520i)
|
Particular Values
L(4) |
≈ |
2.354826255 |
L(21) |
≈ |
2.354826255 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(5.65−5.65i)T |
| 3 | 1+(−33.2−32.8i)T |
| 5 | 1 |
good | 7 | 1+(−919.−919.i)T+8.23e5iT2 |
| 11 | 1−7.17e3iT−1.94e7T2 |
| 13 | 1+(−1.91e3+1.91e3i)T−6.27e7iT2 |
| 17 | 1+(−1.51e4+1.51e4i)T−4.10e8iT2 |
| 19 | 1+3.02e4iT−8.93e8T2 |
| 23 | 1+(−7.00e4−7.00e4i)T+3.40e9iT2 |
| 29 | 1−6.41e4T+1.72e10T2 |
| 31 | 1+8.21e4T+2.75e10T2 |
| 37 | 1+(−2.28e5−2.28e5i)T+9.49e10iT2 |
| 41 | 1−6.18e4iT−1.94e11T2 |
| 43 | 1+(9.28e4−9.28e4i)T−2.71e11iT2 |
| 47 | 1+(−3.90e5+3.90e5i)T−5.06e11iT2 |
| 53 | 1+(4.52e5+4.52e5i)T+1.17e12iT2 |
| 59 | 1−1.71e5T+2.48e12T2 |
| 61 | 1+1.71e6T+3.14e12T2 |
| 67 | 1+(3.34e6+3.34e6i)T+6.06e12iT2 |
| 71 | 1+2.46e5iT−9.09e12T2 |
| 73 | 1+(1.91e6−1.91e6i)T−1.10e13iT2 |
| 79 | 1−1.41e6iT−1.92e13T2 |
| 83 | 1+(−4.78e6−4.78e6i)T+2.71e13iT2 |
| 89 | 1+4.98e6T+4.42e13T2 |
| 97 | 1+(6.44e6+6.44e6i)T+8.07e13iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.92102436051784068056651924704, −10.90878288046566208571063530281, −9.671433595217110383281810597881, −9.107144508899977924997199896474, −8.023366237053530496264230543696, −7.18277192543086085157498734659, −5.31806809065322294962032975767, −4.68857374417458825894773120348, −2.79404839921743637207696898654, −1.57809521294185030212162951117,
0.74710606433557688490152290383, 1.48058119290040039651804238150, 3.04728959412319056476711459913, 4.11124605270616022508307577840, 6.05571791603093820008711696854, 7.43507182290627455297786478096, 8.215560119432293543916582344684, 8.919768425781274257957238928386, 10.44218463406564805473978265607, 11.12151140444186297123969952435