L(s) = 1 | + (5.65 − 5.65i)2-s + (−16.7 + 43.6i)3-s − 64.0i·4-s + (151. + 341. i)6-s + (469. + 469. i)7-s + (−362. − 362. i)8-s + (−1.62e3 − 1.46e3i)9-s − 2.97e3i·11-s + (2.79e3 + 1.07e3i)12-s + (−5.60e3 + 5.60e3i)13-s + 5.31e3·14-s − 4.09e3·16-s + (−7.32e3 + 7.32e3i)17-s + (−1.74e4 + 891. i)18-s − 4.78e4i·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.359 + 0.933i)3-s − 0.500i·4-s + (0.287 + 0.646i)6-s + (0.517 + 0.517i)7-s + (−0.250 − 0.250i)8-s + (−0.742 − 0.670i)9-s − 0.674i·11-s + (0.466 + 0.179i)12-s + (−0.708 + 0.708i)13-s + 0.517·14-s − 0.250·16-s + (−0.361 + 0.361i)17-s + (−0.706 + 0.0360i)18-s − 1.60i·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(−0.134+0.990i)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)(−0.134+0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
−0.134+0.990i
|
Analytic conductor: |
46.8577 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :7/2), −0.134+0.990i)
|
Particular Values
L(4) |
≈ |
1.459238248 |
L(21) |
≈ |
1.459238248 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−5.65+5.65i)T |
| 3 | 1+(16.7−43.6i)T |
| 5 | 1 |
good | 7 | 1+(−469.−469.i)T+8.23e5iT2 |
| 11 | 1+2.97e3iT−1.94e7T2 |
| 13 | 1+(5.60e3−5.60e3i)T−6.27e7iT2 |
| 17 | 1+(7.32e3−7.32e3i)T−4.10e8iT2 |
| 19 | 1+4.78e4iT−8.93e8T2 |
| 23 | 1+(−4.77e4−4.77e4i)T+3.40e9iT2 |
| 29 | 1+7.10e4T+1.72e10T2 |
| 31 | 1−1.29e5T+2.75e10T2 |
| 37 | 1+(4.20e5+4.20e5i)T+9.49e10iT2 |
| 41 | 1+1.82e5iT−1.94e11T2 |
| 43 | 1+(−2.70e5+2.70e5i)T−2.71e11iT2 |
| 47 | 1+(−4.82e5+4.82e5i)T−5.06e11iT2 |
| 53 | 1+(1.21e6+1.21e6i)T+1.17e12iT2 |
| 59 | 1−1.15e6T+2.48e12T2 |
| 61 | 1−1.49e6T+3.14e12T2 |
| 67 | 1+(6.72e5+6.72e5i)T+6.06e12iT2 |
| 71 | 1+4.36e6iT−9.09e12T2 |
| 73 | 1+(−3.38e6+3.38e6i)T−1.10e13iT2 |
| 79 | 1−5.85e5iT−1.92e13T2 |
| 83 | 1+(5.25e6+5.25e6i)T+2.71e13iT2 |
| 89 | 1+9.78e6T+4.42e13T2 |
| 97 | 1+(−9.89e6−9.89e6i)T+8.07e13iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35606132048077852572123093019, −10.71731036774893848292256956853, −9.404673808119722748177660549541, −8.742288572984394324659434955839, −6.88445244927677627984762494731, −5.51218899405586522350326808377, −4.78034171666662849307681871397, −3.54969201763660988080819037405, −2.22089619110177217683046629324, −0.36006944503673612869477264624,
1.25403707936819888034976553888, 2.71607545236771331579096005254, 4.48006416713219160187973083848, 5.50053112024621358463789808786, 6.72046170921574969965721044008, 7.56268121465374817169039589900, 8.361047608911699085174989722880, 10.06501479679019981497971860606, 11.19860744686038034953103770701, 12.29922488709538304441136058323