L(s) = 1 | + (−5.65 + 5.65i)2-s + (46.6 − 3.26i)3-s − 64.0i·4-s + (−245. + 282. i)6-s + (918. + 918. i)7-s + (362. + 362. i)8-s + (2.16e3 − 304. i)9-s − 7.13e3i·11-s + (−209. − 2.98e3i)12-s + (1.04e4 − 1.04e4i)13-s − 1.03e4·14-s − 4.09e3·16-s + (−1.98e4 + 1.98e4i)17-s + (−1.05e4 + 1.39e4i)18-s − 4.24e4i·19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.997 − 0.0698i)3-s − 0.500i·4-s + (−0.463 + 0.533i)6-s + (1.01 + 1.01i)7-s + (0.250 + 0.250i)8-s + (0.990 − 0.139i)9-s − 1.61i·11-s + (−0.0349 − 0.498i)12-s + (1.31 − 1.31i)13-s − 1.01·14-s − 0.250·16-s + (−0.980 + 0.980i)17-s + (−0.425 + 0.564i)18-s − 1.41i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 + 0.259i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.965 + 0.259i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(2.726520127\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.726520127\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (5.65 - 5.65i)T \) |
| 3 | \( 1 + (-46.6 + 3.26i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-918. - 918. i)T + 8.23e5iT^{2} \) |
| 11 | \( 1 + 7.13e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (-1.04e4 + 1.04e4i)T - 6.27e7iT^{2} \) |
| 17 | \( 1 + (1.98e4 - 1.98e4i)T - 4.10e8iT^{2} \) |
| 19 | \( 1 + 4.24e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (-4.59e3 - 4.59e3i)T + 3.40e9iT^{2} \) |
| 29 | \( 1 + 1.04e5T + 1.72e10T^{2} \) |
| 31 | \( 1 + 3.87e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + (1.24e5 + 1.24e5i)T + 9.49e10iT^{2} \) |
| 41 | \( 1 - 3.28e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (-1.23e5 + 1.23e5i)T - 2.71e11iT^{2} \) |
| 47 | \( 1 + (-6.31e5 + 6.31e5i)T - 5.06e11iT^{2} \) |
| 53 | \( 1 + (7.06e5 + 7.06e5i)T + 1.17e12iT^{2} \) |
| 59 | \( 1 - 4.01e5T + 2.48e12T^{2} \) |
| 61 | \( 1 - 2.71e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + (1.30e6 + 1.30e6i)T + 6.06e12iT^{2} \) |
| 71 | \( 1 - 1.05e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-2.39e6 + 2.39e6i)T - 1.10e13iT^{2} \) |
| 79 | \( 1 + 2.40e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (-3.09e6 - 3.09e6i)T + 2.71e13iT^{2} \) |
| 89 | \( 1 - 2.35e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + (-7.53e6 - 7.53e6i)T + 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30104202073015554227164082958, −10.68224163035526211699234628680, −8.930024808059814535099553513752, −8.632601994762727625656300943724, −7.87733240912223576202939818848, −6.32624213009055298751949693321, −5.27817586366752554116072539014, −3.55395797136896938291135450322, −2.19676632306430107644387296615, −0.832268629222879466325752514299,
1.38303109028802929021532996670, 2.05883264885694853108446902009, 3.89407619009794801079697357880, 4.50188297721779130588643918873, 6.94465746869512391311094022825, 7.65231355701250160961608560860, 8.748482784331884450250369400841, 9.614754750311767792652973779124, 10.61043673567060272558749937414, 11.54126763057297224050749813932