Properties

Label 2-150-15.2-c7-0-31
Degree 22
Conductor 150150
Sign 0.965+0.259i0.965 + 0.259i
Analytic cond. 46.857746.8577
Root an. cond. 6.845276.84527
Motivic weight 77
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.65 + 5.65i)2-s + (46.6 − 3.26i)3-s − 64.0i·4-s + (−245. + 282. i)6-s + (918. + 918. i)7-s + (362. + 362. i)8-s + (2.16e3 − 304. i)9-s − 7.13e3i·11-s + (−209. − 2.98e3i)12-s + (1.04e4 − 1.04e4i)13-s − 1.03e4·14-s − 4.09e3·16-s + (−1.98e4 + 1.98e4i)17-s + (−1.05e4 + 1.39e4i)18-s − 4.24e4i·19-s + ⋯
L(s)  = 1  + (−0.499 + 0.499i)2-s + (0.997 − 0.0698i)3-s − 0.500i·4-s + (−0.463 + 0.533i)6-s + (1.01 + 1.01i)7-s + (0.250 + 0.250i)8-s + (0.990 − 0.139i)9-s − 1.61i·11-s + (−0.0349 − 0.498i)12-s + (1.31 − 1.31i)13-s − 1.01·14-s − 0.250·16-s + (−0.980 + 0.980i)17-s + (−0.425 + 0.564i)18-s − 1.41i·19-s + ⋯

Functional equation

Λ(s)=(150s/2ΓC(s)L(s)=((0.965+0.259i)Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 + 0.259i)\, \overline{\Lambda}(8-s) \end{aligned}
Λ(s)=(150s/2ΓC(s+7/2)L(s)=((0.965+0.259i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.965 + 0.259i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 150150    =    23522 \cdot 3 \cdot 5^{2}
Sign: 0.965+0.259i0.965 + 0.259i
Analytic conductor: 46.857746.8577
Root analytic conductor: 6.845276.84527
Motivic weight: 77
Rational: no
Arithmetic: yes
Character: χ150(107,)\chi_{150} (107, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 150, ( :7/2), 0.965+0.259i)(2,\ 150,\ (\ :7/2),\ 0.965 + 0.259i)

Particular Values

L(4)L(4) \approx 2.7265201272.726520127
L(12)L(\frac12) \approx 2.7265201272.726520127
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(5.655.65i)T 1 + (5.65 - 5.65i)T
3 1+(46.6+3.26i)T 1 + (-46.6 + 3.26i)T
5 1 1
good7 1+(918.918.i)T+8.23e5iT2 1 + (-918. - 918. i)T + 8.23e5iT^{2}
11 1+7.13e3iT1.94e7T2 1 + 7.13e3iT - 1.94e7T^{2}
13 1+(1.04e4+1.04e4i)T6.27e7iT2 1 + (-1.04e4 + 1.04e4i)T - 6.27e7iT^{2}
17 1+(1.98e41.98e4i)T4.10e8iT2 1 + (1.98e4 - 1.98e4i)T - 4.10e8iT^{2}
19 1+4.24e4iT8.93e8T2 1 + 4.24e4iT - 8.93e8T^{2}
23 1+(4.59e34.59e3i)T+3.40e9iT2 1 + (-4.59e3 - 4.59e3i)T + 3.40e9iT^{2}
29 1+1.04e5T+1.72e10T2 1 + 1.04e5T + 1.72e10T^{2}
31 1+3.87e4T+2.75e10T2 1 + 3.87e4T + 2.75e10T^{2}
37 1+(1.24e5+1.24e5i)T+9.49e10iT2 1 + (1.24e5 + 1.24e5i)T + 9.49e10iT^{2}
41 13.28e5iT1.94e11T2 1 - 3.28e5iT - 1.94e11T^{2}
43 1+(1.23e5+1.23e5i)T2.71e11iT2 1 + (-1.23e5 + 1.23e5i)T - 2.71e11iT^{2}
47 1+(6.31e5+6.31e5i)T5.06e11iT2 1 + (-6.31e5 + 6.31e5i)T - 5.06e11iT^{2}
53 1+(7.06e5+7.06e5i)T+1.17e12iT2 1 + (7.06e5 + 7.06e5i)T + 1.17e12iT^{2}
59 14.01e5T+2.48e12T2 1 - 4.01e5T + 2.48e12T^{2}
61 12.71e6T+3.14e12T2 1 - 2.71e6T + 3.14e12T^{2}
67 1+(1.30e6+1.30e6i)T+6.06e12iT2 1 + (1.30e6 + 1.30e6i)T + 6.06e12iT^{2}
71 11.05e6iT9.09e12T2 1 - 1.05e6iT - 9.09e12T^{2}
73 1+(2.39e6+2.39e6i)T1.10e13iT2 1 + (-2.39e6 + 2.39e6i)T - 1.10e13iT^{2}
79 1+2.40e6iT1.92e13T2 1 + 2.40e6iT - 1.92e13T^{2}
83 1+(3.09e63.09e6i)T+2.71e13iT2 1 + (-3.09e6 - 3.09e6i)T + 2.71e13iT^{2}
89 12.35e6T+4.42e13T2 1 - 2.35e6T + 4.42e13T^{2}
97 1+(7.53e67.53e6i)T+8.07e13iT2 1 + (-7.53e6 - 7.53e6i)T + 8.07e13iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.30104202073015554227164082958, −10.68224163035526211699234628680, −8.930024808059814535099553513752, −8.632601994762727625656300943724, −7.87733240912223576202939818848, −6.32624213009055298751949693321, −5.27817586366752554116072539014, −3.55395797136896938291135450322, −2.19676632306430107644387296615, −0.832268629222879466325752514299, 1.38303109028802929021532996670, 2.05883264885694853108446902009, 3.89407619009794801079697357880, 4.50188297721779130588643918873, 6.94465746869512391311094022825, 7.65231355701250160961608560860, 8.748482784331884450250369400841, 9.614754750311767792652973779124, 10.61043673567060272558749937414, 11.54126763057297224050749813932

Graph of the ZZ-function along the critical line