L(s) = 1 | + (0.707 + 0.707i)2-s + (1.67 − 0.448i)3-s + 1.00i·4-s + (1.5 + 0.866i)6-s + (−2.44 + 2.44i)7-s + (−0.707 + 0.707i)8-s + (2.59 − 1.50i)9-s − 5.19i·11-s + (0.448 + 1.67i)12-s − 3.46·14-s − 1.00·16-s + (−2.12 − 2.12i)17-s + (2.89 + 0.776i)18-s + i·19-s + (−3 + 5.19i)21-s + (3.67 − 3.67i)22-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.965 − 0.258i)3-s + 0.500i·4-s + (0.612 + 0.353i)6-s + (−0.925 + 0.925i)7-s + (−0.250 + 0.250i)8-s + (0.866 − 0.5i)9-s − 1.56i·11-s + (0.129 + 0.482i)12-s − 0.925·14-s − 0.250·16-s + (−0.514 − 0.514i)17-s + (0.683 + 0.183i)18-s + 0.229i·19-s + (−0.654 + 1.13i)21-s + (0.783 − 0.783i)22-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.828−0.559i)Λ(2−s)
Λ(s)=(=(150s/2ΓC(s+1/2)L(s)(0.828−0.559i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.828−0.559i
|
Analytic conductor: |
1.19775 |
Root analytic conductor: |
1.09442 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :1/2), 0.828−0.559i)
|
Particular Values
L(1) |
≈ |
1.63019+0.499193i |
L(21) |
≈ |
1.63019+0.499193i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 3 | 1+(−1.67+0.448i)T |
| 5 | 1 |
good | 7 | 1+(2.44−2.44i)T−7iT2 |
| 11 | 1+5.19iT−11T2 |
| 13 | 1+13iT2 |
| 17 | 1+(2.12+2.12i)T+17iT2 |
| 19 | 1−iT−19T2 |
| 23 | 1+(4.24−4.24i)T−23iT2 |
| 29 | 1+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+(−2.44+2.44i)T−37iT2 |
| 41 | 1−5.19iT−41T2 |
| 43 | 1+(−2.44−2.44i)T+43iT2 |
| 47 | 1+47iT2 |
| 53 | 1+(−4.24+4.24i)T−53iT2 |
| 59 | 1+10.3T+59T2 |
| 61 | 1−14T+61T2 |
| 67 | 1+(3.67−3.67i)T−67iT2 |
| 71 | 1−71T2 |
| 73 | 1+(−6.12−6.12i)T+73iT2 |
| 79 | 1−14iT−79T2 |
| 83 | 1+(−2.12+2.12i)T−83iT2 |
| 89 | 1−15.5T+89T2 |
| 97 | 1+(4.89−4.89i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.33061749048803286923780687149, −12.45726626675015378193100454794, −11.36671939821205130573798369171, −9.668539346855621596939464055384, −8.833714664259009541260787522317, −7.927639899796082279395426842762, −6.59019295305139983385951764781, −5.65662929676451807619200184444, −3.75160830104294674073228019702, −2.70572854985074972695335552668,
2.21477996751888029364567173423, 3.74289328770649006938144316249, 4.59037963425345594477193943323, 6.57907450940759323929561227870, 7.57105743245793777515742952631, 9.082740597853566796540835246490, 10.02898589089507563784961585740, 10.58104763866450892990411159604, 12.27648274533574283403614565765, 13.00216077312138081701779265833