L(s) = 1 | + (0.707 + 0.707i)2-s + (1.67 − 0.448i)3-s + 1.00i·4-s + (1.5 + 0.866i)6-s + (−2.44 + 2.44i)7-s + (−0.707 + 0.707i)8-s + (2.59 − 1.50i)9-s − 5.19i·11-s + (0.448 + 1.67i)12-s − 3.46·14-s − 1.00·16-s + (−2.12 − 2.12i)17-s + (2.89 + 0.776i)18-s + i·19-s + (−3 + 5.19i)21-s + (3.67 − 3.67i)22-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.965 − 0.258i)3-s + 0.500i·4-s + (0.612 + 0.353i)6-s + (−0.925 + 0.925i)7-s + (−0.250 + 0.250i)8-s + (0.866 − 0.5i)9-s − 1.56i·11-s + (0.129 + 0.482i)12-s − 0.925·14-s − 0.250·16-s + (−0.514 − 0.514i)17-s + (0.683 + 0.183i)18-s + 0.229i·19-s + (−0.654 + 1.13i)21-s + (0.783 − 0.783i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.828 - 0.559i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.828 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.63019 + 0.499193i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.63019 + 0.499193i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (-1.67 + 0.448i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (2.44 - 2.44i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.19iT - 11T^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 + (2.12 + 2.12i)T + 17iT^{2} \) |
| 19 | \( 1 - iT - 19T^{2} \) |
| 23 | \( 1 + (4.24 - 4.24i)T - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 + (-2.44 + 2.44i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.19iT - 41T^{2} \) |
| 43 | \( 1 + (-2.44 - 2.44i)T + 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 + (-4.24 + 4.24i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 - 14T + 61T^{2} \) |
| 67 | \( 1 + (3.67 - 3.67i)T - 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-6.12 - 6.12i)T + 73iT^{2} \) |
| 79 | \( 1 - 14iT - 79T^{2} \) |
| 83 | \( 1 + (-2.12 + 2.12i)T - 83iT^{2} \) |
| 89 | \( 1 - 15.5T + 89T^{2} \) |
| 97 | \( 1 + (4.89 - 4.89i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.33061749048803286923780687149, −12.45726626675015378193100454794, −11.36671939821205130573798369171, −9.668539346855621596939464055384, −8.833714664259009541260787522317, −7.927639899796082279395426842762, −6.59019295305139983385951764781, −5.65662929676451807619200184444, −3.75160830104294674073228019702, −2.70572854985074972695335552668,
2.21477996751888029364567173423, 3.74289328770649006938144316249, 4.59037963425345594477193943323, 6.57907450940759323929561227870, 7.57105743245793777515742952631, 9.082740597853566796540835246490, 10.02898589089507563784961585740, 10.58104763866450892990411159604, 12.27648274533574283403614565765, 13.00216077312138081701779265833