L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.690 − 2.12i)5-s + (0.309 − 0.951i)6-s + 2·7-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + (1.80 − 1.31i)10-s + (0.618 + 0.449i)11-s + (0.809 − 0.587i)12-s + (−1.5 + 1.08i)13-s + (1.61 + 1.17i)14-s − 2.23·15-s + (−0.809 + 0.587i)16-s + (0.354 − 1.08i)17-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.178 − 0.549i)3-s + (0.154 + 0.475i)4-s + (0.309 − 0.951i)5-s + (0.126 − 0.388i)6-s + 0.755·7-s + (−0.109 + 0.336i)8-s + (−0.269 + 0.195i)9-s + (0.572 − 0.415i)10-s + (0.186 + 0.135i)11-s + (0.233 − 0.169i)12-s + (−0.416 + 0.302i)13-s + (0.432 + 0.314i)14-s − 0.577·15-s + (−0.202 + 0.146i)16-s + (0.0858 − 0.264i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.49453 - 0.0940282i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.49453 - 0.0940282i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 + (-0.690 + 2.12i)T \) |
good | 7 | \( 1 - 2T + 7T^{2} \) |
| 11 | \( 1 + (-0.618 - 0.449i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (1.5 - 1.08i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.354 + 1.08i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (2.23 - 6.88i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (4.85 + 3.52i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (1.11 + 3.44i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3 - 9.23i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-7.16 + 5.20i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (4.11 - 2.99i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 3.23T + 43T^{2} \) |
| 47 | \( 1 + (-2.85 - 8.78i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.57 + 10.9i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-7.23 + 5.25i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.73 - 1.26i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-1.14 + 3.52i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (-2.52 - 7.77i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-7.97 - 5.79i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-1.85 + 5.70i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (2.92 + 2.12i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (2.20 + 6.79i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81728510557522293120648429568, −12.34290600349028552178431530951, −11.36033808836525419913030935056, −9.884079659220647862020962358029, −8.499241886291921564136946711727, −7.76726723566014285915545147718, −6.36060986634045218351650888427, −5.31749180948017034830304535510, −4.21501948897060548742146284126, −1.89414489831281707489994724004,
2.39424812705518774258246690486, 3.88651645387973616330895132183, 5.18463910985769388165492696502, 6.31836009160644899111225545213, 7.64982664406823497799484814159, 9.243439402267130846148126510136, 10.26938872061852166842472006831, 11.12197011188085210931820762365, 11.73524015727050511716928480188, 13.16615254079391933567342796186