L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.690 − 2.12i)5-s + (0.309 − 0.951i)6-s + 2·7-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + (1.80 − 1.31i)10-s + (0.618 + 0.449i)11-s + (0.809 − 0.587i)12-s + (−1.5 + 1.08i)13-s + (1.61 + 1.17i)14-s − 2.23·15-s + (−0.809 + 0.587i)16-s + (0.354 − 1.08i)17-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.178 − 0.549i)3-s + (0.154 + 0.475i)4-s + (0.309 − 0.951i)5-s + (0.126 − 0.388i)6-s + 0.755·7-s + (−0.109 + 0.336i)8-s + (−0.269 + 0.195i)9-s + (0.572 − 0.415i)10-s + (0.186 + 0.135i)11-s + (0.233 − 0.169i)12-s + (−0.416 + 0.302i)13-s + (0.432 + 0.314i)14-s − 0.577·15-s + (−0.202 + 0.146i)16-s + (0.0858 − 0.264i)17-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.992+0.125i)Λ(2−s)
Λ(s)=(=(150s/2ΓC(s+1/2)L(s)(0.992+0.125i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.992+0.125i
|
Analytic conductor: |
1.19775 |
Root analytic conductor: |
1.09442 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :1/2), 0.992+0.125i)
|
Particular Values
L(1) |
≈ |
1.49453−0.0940282i |
L(21) |
≈ |
1.49453−0.0940282i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 3 | 1+(0.309+0.951i)T |
| 5 | 1+(−0.690+2.12i)T |
good | 7 | 1−2T+7T2 |
| 11 | 1+(−0.618−0.449i)T+(3.39+10.4i)T2 |
| 13 | 1+(1.5−1.08i)T+(4.01−12.3i)T2 |
| 17 | 1+(−0.354+1.08i)T+(−13.7−9.99i)T2 |
| 19 | 1+(2.23−6.88i)T+(−15.3−11.1i)T2 |
| 23 | 1+(4.85+3.52i)T+(7.10+21.8i)T2 |
| 29 | 1+(1.11+3.44i)T+(−23.4+17.0i)T2 |
| 31 | 1+(3−9.23i)T+(−25.0−18.2i)T2 |
| 37 | 1+(−7.16+5.20i)T+(11.4−35.1i)T2 |
| 41 | 1+(4.11−2.99i)T+(12.6−38.9i)T2 |
| 43 | 1−3.23T+43T2 |
| 47 | 1+(−2.85−8.78i)T+(−38.0+27.6i)T2 |
| 53 | 1+(3.57+10.9i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−7.23+5.25i)T+(18.2−56.1i)T2 |
| 61 | 1+(−1.73−1.26i)T+(18.8+58.0i)T2 |
| 67 | 1+(−1.14+3.52i)T+(−54.2−39.3i)T2 |
| 71 | 1+(−2.52−7.77i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−7.97−5.79i)T+(22.5+69.4i)T2 |
| 79 | 1+(−63.9+46.4i)T2 |
| 83 | 1+(−1.85+5.70i)T+(−67.1−48.7i)T2 |
| 89 | 1+(2.92+2.12i)T+(27.5+84.6i)T2 |
| 97 | 1+(2.20+6.79i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.81728510557522293120648429568, −12.34290600349028552178431530951, −11.36033808836525419913030935056, −9.884079659220647862020962358029, −8.499241886291921564136946711727, −7.76726723566014285915545147718, −6.36060986634045218351650888427, −5.31749180948017034830304535510, −4.21501948897060548742146284126, −1.89414489831281707489994724004,
2.39424812705518774258246690486, 3.88651645387973616330895132183, 5.18463910985769388165492696502, 6.31836009160644899111225545213, 7.64982664406823497799484814159, 9.243439402267130846148126510136, 10.26938872061852166842472006831, 11.12197011188085210931820762365, 11.73524015727050511716928480188, 13.16615254079391933567342796186