L(s) = 1 | + (−0.642 + 1.26i)2-s + (−0.270 + 1.71i)3-s + (−1.17 − 1.61i)4-s + (−2.24 + 4.46i)5-s + (−1.98 − 1.43i)6-s + (−8.57 − 8.57i)7-s + (2.79 − 0.442i)8-s + (−2.85 − 0.927i)9-s + (−4.18 − 5.69i)10-s + (0.681 + 2.09i)11-s + (3.08 − 1.57i)12-s + (−0.642 − 1.26i)13-s + (16.3 − 5.30i)14-s + (−7.03 − 5.05i)15-s + (−1.23 + 3.80i)16-s + (−3.13 − 19.7i)17-s + ⋯ |
L(s) = 1 | + (−0.321 + 0.630i)2-s + (−0.0903 + 0.570i)3-s + (−0.293 − 0.404i)4-s + (−0.449 + 0.893i)5-s + (−0.330 − 0.239i)6-s + (−1.22 − 1.22i)7-s + (0.349 − 0.0553i)8-s + (−0.317 − 0.103i)9-s + (−0.418 − 0.569i)10-s + (0.0619 + 0.190i)11-s + (0.257 − 0.131i)12-s + (−0.0494 − 0.0969i)13-s + (1.16 − 0.378i)14-s + (−0.468 − 0.336i)15-s + (−0.0772 + 0.237i)16-s + (−0.184 − 1.16i)17-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(−0.527+0.849i)Λ(3−s)
Λ(s)=(=(150s/2ΓC(s+1)L(s)(−0.527+0.849i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
−0.527+0.849i
|
Analytic conductor: |
4.08720 |
Root analytic conductor: |
2.02168 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :1), −0.527+0.849i)
|
Particular Values
L(23) |
≈ |
0.0391952−0.0704440i |
L(21) |
≈ |
0.0391952−0.0704440i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.642−1.26i)T |
| 3 | 1+(0.270−1.71i)T |
| 5 | 1+(2.24−4.46i)T |
good | 7 | 1+(8.57+8.57i)T+49iT2 |
| 11 | 1+(−0.681−2.09i)T+(−97.8+71.1i)T2 |
| 13 | 1+(0.642+1.26i)T+(−99.3+136.i)T2 |
| 17 | 1+(3.13+19.7i)T+(−274.+89.3i)T2 |
| 19 | 1+(14.3−19.7i)T+(−111.−343.i)T2 |
| 23 | 1+(21.3+10.8i)T+(310.+427.i)T2 |
| 29 | 1+(−22.2−30.5i)T+(−259.+799.i)T2 |
| 31 | 1+(23.8+17.3i)T+(296.+913.i)T2 |
| 37 | 1+(7.25−3.69i)T+(804.−1.10e3i)T2 |
| 41 | 1+(21.4−66.0i)T+(−1.35e3−988.i)T2 |
| 43 | 1+(26.5−26.5i)T−1.84e3iT2 |
| 47 | 1+(16.5+2.62i)T+(2.10e3+682.i)T2 |
| 53 | 1+(12.8−81.3i)T+(−2.67e3−868.i)T2 |
| 59 | 1+(−27.3−8.87i)T+(2.81e3+2.04e3i)T2 |
| 61 | 1+(20.9+64.5i)T+(−3.01e3+2.18e3i)T2 |
| 67 | 1+(1.94+12.2i)T+(−4.26e3+1.38e3i)T2 |
| 71 | 1+(−97.9+71.1i)T+(1.55e3−4.79e3i)T2 |
| 73 | 1+(−91.3−46.5i)T+(3.13e3+4.31e3i)T2 |
| 79 | 1+(66.9+92.1i)T+(−1.92e3+5.93e3i)T2 |
| 83 | 1+(78.3−12.4i)T+(6.55e3−2.12e3i)T2 |
| 89 | 1+(0.353−0.114i)T+(6.40e3−4.65e3i)T2 |
| 97 | 1+(86.8+13.7i)T+(8.94e3+2.90e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.77203028634661946513955813371, −12.48853394644022143591528803484, −11.07161855915661609055296321528, −10.20686344897159226493447781080, −9.625348808805223683913142366250, −8.062669170527813982235619622270, −6.98578225342290777074209245167, −6.25262695480759975650578689633, −4.42264958819874127346180811318, −3.28351207556898226771520406338,
0.05511945933139242973575086440, 2.15572870001148366073556301974, 3.76130156729666560227485937279, 5.48757686007596681307284545907, 6.69735553297371403286526489470, 8.331304357952991955056482463783, 8.871629545752914034058662426982, 9.961259248935907959272792243075, 11.38026015326546110254108190575, 12.29109845773352126167756416491