L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.00655 − 2.23i)5-s + (0.809 − 0.587i)6-s + 2.63·7-s + (0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + (2.12 + 0.697i)10-s + (1.93 − 5.96i)11-s + (0.309 + 0.951i)12-s + (0.697 + 2.14i)13-s + (−0.815 + 2.51i)14-s + (−1.31 + 1.80i)15-s + (0.309 + 0.951i)16-s + (−1.31 + 0.955i)17-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (−0.467 − 0.339i)3-s + (−0.404 − 0.293i)4-s + (0.00293 − 0.999i)5-s + (0.330 − 0.239i)6-s + 0.997·7-s + (0.286 − 0.207i)8-s + (0.103 + 0.317i)9-s + (0.671 + 0.220i)10-s + (0.584 − 1.79i)11-s + (0.0892 + 0.274i)12-s + (0.193 + 0.595i)13-s + (−0.217 + 0.670i)14-s + (−0.340 + 0.466i)15-s + (0.0772 + 0.237i)16-s + (−0.319 + 0.231i)17-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.927+0.373i)Λ(2−s)
Λ(s)=(=(150s/2ΓC(s+1/2)L(s)(0.927+0.373i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.927+0.373i
|
Analytic conductor: |
1.19775 |
Root analytic conductor: |
1.09442 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :1/2), 0.927+0.373i)
|
Particular Values
L(1) |
≈ |
0.899413−0.174307i |
L(21) |
≈ |
0.899413−0.174307i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.309−0.951i)T |
| 3 | 1+(0.809+0.587i)T |
| 5 | 1+(−0.00655+2.23i)T |
good | 7 | 1−2.63T+7T2 |
| 11 | 1+(−1.93+5.96i)T+(−8.89−6.46i)T2 |
| 13 | 1+(−0.697−2.14i)T+(−10.5+7.64i)T2 |
| 17 | 1+(1.31−0.955i)T+(5.25−16.1i)T2 |
| 19 | 1+(−1+0.726i)T+(5.87−18.0i)T2 |
| 23 | 1+(1.38−4.25i)T+(−18.6−13.5i)T2 |
| 29 | 1+(5.55+4.03i)T+(8.96+27.5i)T2 |
| 31 | 1+(−4.75+3.45i)T+(9.57−29.4i)T2 |
| 37 | 1+(−2.49−7.68i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−3.55−10.9i)T+(−33.1+24.0i)T2 |
| 43 | 1+1.97T+43T2 |
| 47 | 1+(5.25+3.81i)T+(14.5+44.6i)T2 |
| 53 | 1+(−5.66−4.11i)T+(16.3+50.4i)T2 |
| 59 | 1+(−2.79−8.59i)T+(−47.7+34.6i)T2 |
| 61 | 1+(0.933−2.87i)T+(−49.3−35.8i)T2 |
| 67 | 1+(−8.12+5.90i)T+(20.7−63.7i)T2 |
| 71 | 1+(−7.90−5.74i)T+(21.9+67.5i)T2 |
| 73 | 1+(3.70−11.4i)T+(−59.0−42.9i)T2 |
| 79 | 1+(3.03+2.20i)T+(24.4+75.1i)T2 |
| 83 | 1+(−6.77+4.92i)T+(25.6−78.9i)T2 |
| 89 | 1+(0.120−0.370i)T+(−72.0−52.3i)T2 |
| 97 | 1+(1.21+0.882i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.31006606409504743272694517554, −11.62794365915299264393793094882, −11.35701731242394527239408762338, −9.615563685170127233446338075854, −8.522335688744759306742220518208, −7.921397933557687455571201214919, −6.33458672652040128067310709995, −5.45710638119489757845118112524, −4.22323358205086127576466658121, −1.22786740220948346480124704589,
2.08959845916282485844296962097, 3.91396595650554236474837334782, 5.09864949159950742781207146426, 6.77117178982815128573226386239, 7.81371276936030481610151480357, 9.299231046524535742511740319763, 10.28911120820932503095894500756, 10.97611231495990210945161462850, 11.87988356423732047425947957808, 12.73325313603969579184911857548