Properties

Label 2-1512-1.1-c1-0-4
Degree $2$
Conductor $1512$
Sign $1$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 11-s − 4·13-s + 6·17-s − 19-s + 9·23-s − 4·25-s + 11·31-s + 35-s + 37-s + 5·41-s + 2·43-s − 2·47-s + 49-s + 12·53-s + 55-s − 6·59-s + 4·65-s − 4·67-s + 13·71-s − 14·73-s + 77-s + 10·79-s + 8·83-s − 6·85-s − 3·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 0.301·11-s − 1.10·13-s + 1.45·17-s − 0.229·19-s + 1.87·23-s − 4/5·25-s + 1.97·31-s + 0.169·35-s + 0.164·37-s + 0.780·41-s + 0.304·43-s − 0.291·47-s + 1/7·49-s + 1.64·53-s + 0.134·55-s − 0.781·59-s + 0.496·65-s − 0.488·67-s + 1.54·71-s − 1.63·73-s + 0.113·77-s + 1.12·79-s + 0.878·83-s − 0.650·85-s − 0.317·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.384346108\)
\(L(\frac12)\) \(\approx\) \(1.384346108\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 11 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 13 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.608203759312194453797257789404, −8.645837641241072084676455533234, −7.73865828747377914951729213009, −7.24443827435431798091802148267, −6.22574815540833714031283437494, −5.27190466845715108765869362211, −4.48258397971251574389629801982, −3.33611157422544257194583862707, −2.53319485263396092629882859053, −0.835548470514578964121677318960, 0.835548470514578964121677318960, 2.53319485263396092629882859053, 3.33611157422544257194583862707, 4.48258397971251574389629801982, 5.27190466845715108765869362211, 6.22574815540833714031283437494, 7.24443827435431798091802148267, 7.73865828747377914951729213009, 8.645837641241072084676455533234, 9.608203759312194453797257789404

Graph of the $Z$-function along the critical line