L(s) = 1 | − 5-s − 7-s − 11-s − 4·13-s + 6·17-s − 19-s + 9·23-s − 4·25-s + 11·31-s + 35-s + 37-s + 5·41-s + 2·43-s − 2·47-s + 49-s + 12·53-s + 55-s − 6·59-s + 4·65-s − 4·67-s + 13·71-s − 14·73-s + 77-s + 10·79-s + 8·83-s − 6·85-s − 3·89-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.377·7-s − 0.301·11-s − 1.10·13-s + 1.45·17-s − 0.229·19-s + 1.87·23-s − 4/5·25-s + 1.97·31-s + 0.169·35-s + 0.164·37-s + 0.780·41-s + 0.304·43-s − 0.291·47-s + 1/7·49-s + 1.64·53-s + 0.134·55-s − 0.781·59-s + 0.496·65-s − 0.488·67-s + 1.54·71-s − 1.63·73-s + 0.113·77-s + 1.12·79-s + 0.878·83-s − 0.650·85-s − 0.317·89-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.384346108 |
L(21) |
≈ |
1.384346108 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1+T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−9T+pT2 |
| 29 | 1+pT2 |
| 31 | 1−11T+pT2 |
| 37 | 1−T+pT2 |
| 41 | 1−5T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+2T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−13T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1+3T+pT2 |
| 97 | 1+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.608203759312194453797257789404, −8.645837641241072084676455533234, −7.73865828747377914951729213009, −7.24443827435431798091802148267, −6.22574815540833714031283437494, −5.27190466845715108765869362211, −4.48258397971251574389629801982, −3.33611157422544257194583862707, −2.53319485263396092629882859053, −0.835548470514578964121677318960,
0.835548470514578964121677318960, 2.53319485263396092629882859053, 3.33611157422544257194583862707, 4.48258397971251574389629801982, 5.27190466845715108765869362211, 6.22574815540833714031283437494, 7.24443827435431798091802148267, 7.73865828747377914951729213009, 8.645837641241072084676455533234, 9.608203759312194453797257789404