L(s) = 1 | − 2.37·5-s + 7-s − 1.37·13-s + 17-s + 6.74·19-s − 5.37·23-s + 0.627·25-s + 0.627·29-s + 2.62·31-s − 2.37·35-s + 4.37·37-s + 5.11·41-s + 7.74·43-s + 0.372·47-s + 49-s + 12.1·53-s − 0.255·59-s + 1.25·61-s + 3.25·65-s + 4.62·67-s − 7.37·71-s + 10·73-s − 9.11·79-s + 15.8·83-s − 2.37·85-s + 2.62·89-s − 1.37·91-s + ⋯ |
L(s) = 1 | − 1.06·5-s + 0.377·7-s − 0.380·13-s + 0.242·17-s + 1.54·19-s − 1.12·23-s + 0.125·25-s + 0.116·29-s + 0.471·31-s − 0.400·35-s + 0.718·37-s + 0.799·41-s + 1.18·43-s + 0.0543·47-s + 0.142·49-s + 1.66·53-s − 0.0332·59-s + 0.160·61-s + 0.403·65-s + 0.565·67-s − 0.874·71-s + 1.17·73-s − 1.02·79-s + 1.74·83-s − 0.257·85-s + 0.278·89-s − 0.143·91-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.377405778 |
L(21) |
≈ |
1.377405778 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1+2.37T+5T2 |
| 11 | 1+11T2 |
| 13 | 1+1.37T+13T2 |
| 17 | 1−T+17T2 |
| 19 | 1−6.74T+19T2 |
| 23 | 1+5.37T+23T2 |
| 29 | 1−0.627T+29T2 |
| 31 | 1−2.62T+31T2 |
| 37 | 1−4.37T+37T2 |
| 41 | 1−5.11T+41T2 |
| 43 | 1−7.74T+43T2 |
| 47 | 1−0.372T+47T2 |
| 53 | 1−12.1T+53T2 |
| 59 | 1+0.255T+59T2 |
| 61 | 1−1.25T+61T2 |
| 67 | 1−4.62T+67T2 |
| 71 | 1+7.37T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+9.11T+79T2 |
| 83 | 1−15.8T+83T2 |
| 89 | 1−2.62T+89T2 |
| 97 | 1−9.48T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.494371253326006661345522740413, −8.558753907729200267060310096879, −7.61484721121862250599219428100, −7.50519700112715179141567584728, −6.18241795578000492124680060514, −5.27426583044841362411508059967, −4.32669599270316909629217427887, −3.57178027611384620479456878112, −2.41648034852488218705625360947, −0.842275583713282463176159217319,
0.842275583713282463176159217319, 2.41648034852488218705625360947, 3.57178027611384620479456878112, 4.32669599270316909629217427887, 5.27426583044841362411508059967, 6.18241795578000492124680060514, 7.50519700112715179141567584728, 7.61484721121862250599219428100, 8.558753907729200267060310096879, 9.494371253326006661345522740413