L(s) = 1 | + (0.766 − 0.642i)2-s + (0.5 + 0.866i)3-s + (0.173 − 0.984i)4-s + (−1.76 + 0.642i)5-s + (0.939 + 0.342i)6-s + (0.173 + 0.984i)7-s + (−0.500 − 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.939 + 1.62i)10-s + (0.939 − 0.342i)12-s + (0.766 + 0.642i)13-s + (0.766 + 0.642i)14-s + (−1.43 − 1.20i)15-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)18-s + (0.173 + 0.300i)19-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.5 + 0.866i)3-s + (0.173 − 0.984i)4-s + (−1.76 + 0.642i)5-s + (0.939 + 0.342i)6-s + (0.173 + 0.984i)7-s + (−0.500 − 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.939 + 1.62i)10-s + (0.939 − 0.342i)12-s + (0.766 + 0.642i)13-s + (0.766 + 0.642i)14-s + (−1.43 − 1.20i)15-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)18-s + (0.173 + 0.300i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.448 - 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.448 - 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.349557845\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.349557845\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.173 - 0.984i)T \) |
good | 5 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 13 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-1.87 + 0.684i)T + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.886444321101022172110579428437, −9.114952655861471386966700665097, −8.295381787836537238964274245200, −7.52678742585252470890586612506, −6.40596660251561964991236748421, −5.37672425588564750765151350971, −4.51622457574136755048623136667, −3.59287874635185335457275662004, −3.32791386716660817160323228668, −2.05265841945606898454214609829,
0.826082195581700843991105819901, 2.79358374711878727284996130663, 3.81824972038186660433067743128, 4.22235370145455635383042878382, 5.32630609007917896063392875805, 6.59450438517177953073031604181, 7.13738748432169065925737663307, 7.957126945048532260898093504836, 8.267377806203882910330444074930, 8.930169819553289886574223132285