L(s) = 1 | + (0.766 − 0.642i)2-s + (0.5 + 0.866i)3-s + (0.173 − 0.984i)4-s + (−1.76 + 0.642i)5-s + (0.939 + 0.342i)6-s + (0.173 + 0.984i)7-s + (−0.500 − 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.939 + 1.62i)10-s + (0.939 − 0.342i)12-s + (0.766 + 0.642i)13-s + (0.766 + 0.642i)14-s + (−1.43 − 1.20i)15-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)18-s + (0.173 + 0.300i)19-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.5 + 0.866i)3-s + (0.173 − 0.984i)4-s + (−1.76 + 0.642i)5-s + (0.939 + 0.342i)6-s + (0.173 + 0.984i)7-s + (−0.500 − 0.866i)8-s + (−0.499 + 0.866i)9-s + (−0.939 + 1.62i)10-s + (0.939 − 0.342i)12-s + (0.766 + 0.642i)13-s + (0.766 + 0.642i)14-s + (−1.43 − 1.20i)15-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)18-s + (0.173 + 0.300i)19-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)(0.448−0.893i)Λ(1−s)
Λ(s)=(=(1512s/2ΓC(s)L(s)(0.448−0.893i)Λ(1−s)
Degree: |
2 |
Conductor: |
1512
= 23⋅33⋅7
|
Sign: |
0.448−0.893i
|
Analytic conductor: |
0.754586 |
Root analytic conductor: |
0.868669 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1512(1021,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1512, ( :0), 0.448−0.893i)
|
Particular Values
L(21) |
≈ |
1.349557845 |
L(21) |
≈ |
1.349557845 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.766+0.642i)T |
| 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(−0.173−0.984i)T |
good | 5 | 1+(1.76−0.642i)T+(0.766−0.642i)T2 |
| 11 | 1+(−0.766−0.642i)T2 |
| 13 | 1+(−0.766−0.642i)T+(0.173+0.984i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.173−0.300i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.939+0.342i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+(−0.173−0.984i)T2 |
| 43 | 1+(−0.766−0.642i)T2 |
| 47 | 1+(0.939−0.342i)T2 |
| 53 | 1−T2 |
| 59 | 1+(−1.87+0.684i)T+(0.766−0.642i)T2 |
| 61 | 1+(0.266+1.50i)T+(−0.939+0.342i)T2 |
| 67 | 1+(−0.173−0.984i)T2 |
| 71 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−0.266+0.223i)T+(0.173−0.984i)T2 |
| 83 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.886444321101022172110579428437, −9.114952655861471386966700665097, −8.295381787836537238964274245200, −7.52678742585252470890586612506, −6.40596660251561964991236748421, −5.37672425588564750765151350971, −4.51622457574136755048623136667, −3.59287874635185335457275662004, −3.32791386716660817160323228668, −2.05265841945606898454214609829,
0.826082195581700843991105819901, 2.79358374711878727284996130663, 3.81824972038186660433067743128, 4.22235370145455635383042878382, 5.32630609007917896063392875805, 6.59450438517177953073031604181, 7.13738748432169065925737663307, 7.957126945048532260898093504836, 8.267377806203882910330444074930, 8.930169819553289886574223132285