L(s) = 1 | + 2-s + 4-s − 7-s + 8-s + 13-s − 14-s + 16-s + 17-s − 23-s + 25-s + 26-s − 28-s − 29-s + 31-s + 32-s + 34-s − 2·41-s − 43-s − 46-s + 49-s + 50-s + 52-s − 53-s − 56-s − 58-s + 59-s − 2·61-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 7-s + 8-s + 13-s − 14-s + 16-s + 17-s − 23-s + 25-s + 26-s − 28-s − 29-s + 31-s + 32-s + 34-s − 2·41-s − 43-s − 46-s + 49-s + 50-s + 52-s − 53-s − 56-s − 58-s + 59-s − 2·61-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1512s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1512
= 23⋅33⋅7
|
Sign: |
1
|
Analytic conductor: |
0.754586 |
Root analytic conductor: |
0.868669 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ1512(755,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1512, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.992168140 |
L(21) |
≈ |
1.992168140 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1+T |
good | 5 | (1−T)(1+T) |
| 11 | (1−T)(1+T) |
| 13 | 1−T+T2 |
| 17 | 1−T+T2 |
| 19 | (1−T)(1+T) |
| 23 | 1+T+T2 |
| 29 | 1+T+T2 |
| 31 | 1−T+T2 |
| 37 | (1−T)(1+T) |
| 41 | (1+T)2 |
| 43 | 1+T+T2 |
| 47 | (1−T)(1+T) |
| 53 | 1+T+T2 |
| 59 | 1−T+T2 |
| 61 | (1+T)2 |
| 67 | 1+T+T2 |
| 71 | 1+T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1+T)2 |
| 89 | 1−T+T2 |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.976177758117460441739952635687, −8.810055757627786735145184214051, −7.925871014580012675794904153952, −6.99018334114702224439697050529, −6.25634748728377969491617849342, −5.66066818494798845587028740377, −4.60168303389157687301077617621, −3.54980560312016193768741864073, −3.04239986710352024584250206573, −1.57690789820271454898526195632,
1.57690789820271454898526195632, 3.04239986710352024584250206573, 3.54980560312016193768741864073, 4.60168303389157687301077617621, 5.66066818494798845587028740377, 6.25634748728377969491617849342, 6.99018334114702224439697050529, 7.925871014580012675794904153952, 8.810055757627786735145184214051, 9.976177758117460441739952635687