L(s) = 1 | + (−0.310 − 0.537i)5-s + (−1.44 + 2.21i)7-s + (−1.91 − 1.10i)11-s − 0.963i·13-s + (0.653 − 1.13i)17-s + (−1.57 + 0.911i)19-s + (5.27 − 3.04i)23-s + (2.30 − 3.99i)25-s − 6.68i·29-s + (3.48 + 2.01i)31-s + (1.63 + 0.0859i)35-s + (0.165 + 0.286i)37-s + 11.7·41-s − 2.18·43-s + (−1.27 − 2.20i)47-s + ⋯ |
L(s) = 1 | + (−0.138 − 0.240i)5-s + (−0.544 + 0.838i)7-s + (−0.577 − 0.333i)11-s − 0.267i·13-s + (0.158 − 0.274i)17-s + (−0.362 + 0.209i)19-s + (1.10 − 0.635i)23-s + (0.461 − 0.799i)25-s − 1.24i·29-s + (0.626 + 0.361i)31-s + (0.277 + 0.0145i)35-s + (0.0271 + 0.0470i)37-s + 1.83·41-s − 0.333·43-s + (−0.185 − 0.321i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.280965694\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.280965694\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.44 - 2.21i)T \) |
good | 5 | \( 1 + (0.310 + 0.537i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.91 + 1.10i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.963iT - 13T^{2} \) |
| 17 | \( 1 + (-0.653 + 1.13i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.57 - 0.911i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.27 + 3.04i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.68iT - 29T^{2} \) |
| 31 | \( 1 + (-3.48 - 2.01i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.165 - 0.286i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 11.7T + 41T^{2} \) |
| 43 | \( 1 + 2.18T + 43T^{2} \) |
| 47 | \( 1 + (1.27 + 2.20i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.985 - 0.569i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.20 + 10.7i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.603 + 0.348i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.61 - 6.25i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.40iT - 71T^{2} \) |
| 73 | \( 1 + (2.17 + 1.25i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.52 - 7.83i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.85T + 83T^{2} \) |
| 89 | \( 1 + (4.20 + 7.29i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 12.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.308191977157950065148828971117, −8.512390346242674387545149647083, −7.956868164028889887016063385595, −6.81721673417968216360257163884, −6.06505872703600359341276182556, −5.25125429954569123120304246373, −4.35360590919092273018400808219, −3.09150311924977690435047122635, −2.37546869996277260073052503565, −0.58512265967090040623169241082,
1.13568785292751868095358800419, 2.66823649793337296276859810215, 3.56539094117109623514778721157, 4.51653513764435873193846852627, 5.44286516128832762601182208795, 6.53065945742351604049675765866, 7.19914196339591648034661148173, 7.80077840701541208751959642316, 8.939731305351096913318369641953, 9.560050896761407919446574184718